GAP - Reference Manual

Release 4.10.2, 19-Jun-2019

The GAP Group

The GAP Group Email: support@gap-system.org
Homepage: https://www.gap-system.org

mailto://support@gap-system.org
https://www.gap-system.org

GAP - Reference Manual 2

Copyright

Copyright © (1987-2019) for the core part of the GAP system by the GAP Group.

Most parts of this distribution, including the core part of the GAP system are distributed under the terms of
the GNU General Public License, see http://www.gnu.org/licenses/gpl.html or the file GPL in the etc
directory of the GAP installation.

More detailed information about copyright and licenses of parts of this distribution can be found in Section
1.4 of this manual.

GAP is developed over a long time and has many authors and contributors. More detailed information can

be found in Section 1.2 of this manual.

http://www.gnu.org/licenses/gpl.html

Contents

1 Preface 23
1.1 The GAP System 23
1.2 Authors and Maintainers e e e e e e e 25
1.3 Acknowledgements 26
1.4 Copyrightand License i 26
1.5 Further Information about GAP 27
2 The Help System 28
2.1 InvokingtheHelp 28
2.2 Browsing through the Sections oL 28
2.3 Changingthe Help Viewer. 29
24 ThePager Command 31
3 Running GAP 33
3.1 Command Line Options v it 33
3.2 Thegap.iniand gaprcfiles. 38
3.3 Saving and Loading a Workspace 41
3.4 Testing for the System Architecture 42
3.5 Global Values that Control the GAP Session 42
3.6 Coloring the PromptandInput 42
4 The Programming Language 45
4.1 Language Overview oo e e 45
42 Lexical Structure 46
43 Symbols 46
4.4 WhItespaces o v v i e e e e e e 47
4.5 Keywords e 48
4.6 Identifiers e e 48
477 EXPressions i e e e e e e e e e e e e 49
4.8 Variables L e 50
4.9 More About Global Variables 51
4.10 Namespaces for GAP packages L. 55
411 FunctionCalls e 55
412 CompariSONS v v vt e e e e e e e e e e e e e e e 57
4.13 Arithmetic Operators v i e e e e e 58
414 Statements e e e e e e e e e e 59

GAP - Reference Manual
415 ASSIZNMENLSo e e e e e e e e e e e e
416 Procedure Calls e
407 IE . e
418 While.
4.19 Repeat e e e e
420 FOor o . e e
421 Break e e e
422 ContinuUe v v vt e e e e e e e e e e e e e e e e e e
423 Function e e e e e
424 Return (With or without Value)
Functions
5.1 Information abouta function
5.2 Calling a function with a list argument that is interpreted as several arguments . . .
5.3 Wrapping a function, so the values produced are cached
54 Functionsthatdonothing
5.5 FunctionTypes« e
5.6 Naming Conventions v v v v v v it e e e
Main Loop and Break Loop
6.1 MainLoop
6.2 Special Rules for InputLines
6.3 ViewandPrint
6.4 BreakLoops e
6.5 Variable AccessinaBreakLoop
6.6 Errorand ErrorCount
6.7 Leaving GAP e
6.8 LineEditing L
6.9 Editing using the readlinelibrary
6.10 EditingFiles L
6.11 Editor Support e
6.12 Changing the Screen Size
6.13 TeachingMode
Debugging and Profiling Facilities
7.1 Recovery from NoMethodFound-Errors
7.2 Inspecting Applicable Methods
7.3 TracingMethods
7.4 InfoFunctions e
7.5 ASSEIHONS e e e e
7.6 Timing e e e
7.7 Tracking Memory Usage i
7.8 Profiling
7.9 Information about the versionused
7.10 TestFiles e e e
7.11 Debugging Recursion
7.12 Global Memory Information oL oo

60
61
61
62
63
63
65
66
66
70

71
71
74
75
76
77
78

80
80
82
82
86
91
92
93
94
97
100
100
101
101

8

10

11

12

13

GAP - Reference Manual
Options Stack
8.1 Functions Dealing with the Options Stack
8.2 Options Stack —anExample
Files and Filenames
9.1 Portability
9.2 GAPRootDirectories
9.3 Directorieso e
94 FileNames
9.5 Special Filenames
9.6 FileAccess. e
9.7 FileOperations.
Streams
10.1 Categories for Streams and the StreamsFamily
10.2 Operations applicable to All Streams
10.3 Operations for Input Streams
10.4 Operations for Output Streams
10.5 FileStreams L
10.6 UserStreams« .ot v i i
10.7 String Streams oL oL
10.8 Input-Output Streams
109 Dummy Streams
10.10 Handling of Streams in the Background
10.11 Commaseparatedfiles,
Processes
11.1 ProcessandExec
Objects and Elements
12.1 Objects v oo
12.2 Elements as equivalence classes
123 Sets. . . . o e
124 Domains o i e e e e e
12.5 Identical Objects i
12.6 Mutability and Copyability
127 Duplicationof Objects
12.8 Other Operations Applicable to any Object
Types of Objects
13.1 Families e
132 Filters
13.3 Categorieso e e
13.4 Representation
13.5 Attributes
13.6 Setter and Tester for Attributes

137 Properties

129
129
131

132
132
132
133
135
136
136
137

141
141
143
143
146
149
150
150
151
153
153
154

155
155

158
158
158
159
159
159
161
163
164

14

15

16

17

18

19

GAP - Reference Manual
13.8 OtherFilters
139 TYPES . . o o o e e e e e e
Integers
14.1 Integers: Global Variables
14.2 Elementary Operations for Integers
14.3 Quotients and Remainders
14.4 Prime Integers and Factorization,
145 ResidueClassRings
14.6 Check Digits e
147 Random Sources e e
14.8 Bitfields e
Number Theory
15.1 InfoNumtheor (Info Class)
152 PrimeResidues
15.3 Primitive Roots and Discrete Logarithms
154 Roots Modulo Integers
15.5 Multiplicative Arithmetic Functions
15.6 Continued Fractions L
1577 Miscellaneous L e e
Combinatorics
16.1 Combinatorial Numbers
16.2 Combinations, Arrangements and Tuples
16.3 Fibonacci and Lucas Sequences
164 Permanentof aMatriX e e
Rational Numbers
17.1 Rationals: Global Variables
17.2 Elementary Operations for Rationals
Cyclotomic Numbers
18.1 Operations for Cyclotomics o i
18.2 Infinity and negative Infinity oo oo
18.3 Comparisons of Cyclotomics o
18.4 ATLAS Irrationalities e
18.5 Galois Conjugacy of Cyclotomics,
18.6 Internally Represented Cyclotomics
Floats
19.1 Asamplerun. e
19.2 Methods e
19.3 High-precision-specific methods
19.4 Complex arithmetic

19.5 Imterval-specificmethods,

177
178

179
179
180
183
186
191
193
194
197

199
199
199
201
202
205
206
207

209
209
212
221
222

224
224
225

227
227
232
233
233
236
239

GAP - Reference Manual
20 Booleans
20.1 IsBool (Filter) e
20.2 Fail (Variable) e
20.3 Comparisonsof Booleans L oL
20.4 Operations forBooleans
21 Lists
21.1 ListCategories o o i i e e e e e
21.2 Basic Operations for Lists
21.3 ListElements e
21.4 List ASSignment e e e e e e e e
21.5 IsBound and Unbind for Lists
21.6 Identical Lists e
217 Duplication of Lists e
21.8 Membership Test for Lists
21.9 Enlarging Internally Represented Lists
21.10 Comparisons of Lists
21.11 Arithmetic for Lists o L e
21.12 Filters Controlling the Arithmetic Behaviourof Lists
21.13 Additive Arithmetic for Lists oL o
21.14 Multiplicative Arithmetic for Lists
21.15 Mutability Status and List Arithmetic
21.16 Finding Positionsin Lists Lo
21.17 Properties and Attributes for Lists L.
21.18 Sorting Lists L e e e
21.19 Sorted Listsand Sets
21.20 Operations for Lists e
21.21 Advanced List Manipulations
21.22 RaNZES . . . o o o e e e e e
21.23 Enumeratorso e e e e e e e e e e e
22 Boolean Lists
22.1 IsBlist (Filter) e
22.2 Boolean Lists Representing Subsets 0.
22.3 SetOperations viaBoolean Lists
22.4 Function that Modify Boolean Lists
22.5 Moreabout Boolean Lists L o
23 Row Vectors
23.1 IsRowVector (Filter) e
23.2 Operators for Row Vectors Lo
23.3 Row Vectors over Finite Fields
23.4 Coefficient List Arithmetic
23.5 Shifting and Trimming Coefficient Lists
23.6 Functions for Coding Theory
23.7 Vectors as coefficients of polynomials

250
250
250
251
251

254
254
256
257
258
262
263
265
266
266
267
268
269
271
272
275
277
281
283
286
289
299
300
303

304
304
305
306
307
308

GAP - Reference Manual

24 Matrices

25

26

27

24.1 InfoMatrix (Info Class) e
242 Categories of Matrices Lo
243 Operators for Matrices o
24.4 Properties and Attributes of Matrices
24.5 Matrix ConstrucCtions i e e e e e e e e e e e e e
24.6 Random Matrices L e
2477 Matrices Representing Linear Equations and the Gaussian Algorithm
24.8 Eigenvectors and eigenvalues
249 Elementary Divisors e
24.10 Echelonized Matrices i
24.11 Matrices as BasisofaRow Spaceo,
24.12 Triangular Matrices i e e e e
24.13 Matrices as Linear Mappings o e
24.14 Matrices over Finite Fields,
24.15 Inverse and Nullspace of an Integer Matrix Moduloan Ideal
24.16 Special Multiplication Algorithms for Matrices over GF(2)
2417 Block Matrices« . o i e e
Integral matrices and lattices

25.1 Linear equations over the integers and Integral Matrices
25.2 Normal Forms over the Integers
25.3 Determinant of an integer matrixo
254 DecompoSitions i i e e e e e e e e e
25.5 Lattice Reduction
25.6 Orthogonal Embeddings
Vector and Matrix Objects

26.1 Fundamental IdeasandRules oL
26.2 Categories of Vectors and Matrices
26.3 Constructing Vector and Matrix Objects
26.4 Operations for Vector Objects
26.5 Operations for Row List Matrix Objects
26.6 Operations for Flat Matrix Objects,
Strings and Characters

27.1 IsCharandIsString
27.2 Special Characters e e e e e
27.3 Triple Quoted Strings L. e e e
27.4 Internally Represented Strings
27.5 Recognizing Characters
27.6 Comparisons of Strings
27.7 Operations to Produce or Manipulate Strings
27.8 Character Conversionttt
27.9 Operations to Evaluate Strings L o
27.10 Calendar Arithmetic
27.11 Obtaining LaTeX Representations of Objects

320
320
320
322
324
326
329
330
332
333
335
336
338
338
340
343
344
344

346
346
348
351
351
353
355

357
357
358
358
358
360
360

28

29

30

31

GAP - Reference Manual

Dictionaries and General Hash Tables

28.1 Using Dictionaries e e e e
282 Dictionaries e e e e e e e e
28.3 Dictionaries via Binary Lists oL oo
284 GeneralHashTables
285 Hashkeys e
28.6 Densehashtables
2877 Sparse hashtables
Records

29.1 IsRecordand RecNames
29.2 Accessing RecordElements o o
29.3 Record Assignment e e e
29.4 Identical Records
29.5 Comparisonsof Records L
29.6 IsBound and Unbind forRecords
29.7 Record Access Operations e
Collections

30.1 IsCollection (Filter) e
30.2 Collection Families
303 Listsand Collections e
30.4 Attributes and Properties for Collections
30.5 Operations for Collections
30.6 Membership Test for Collections,
30.7 Random Elements L
30.8 Iterators L e e e e e
Domains and their Elements

31.1 Operational Structure of Domains
31.2 Equality and Comparison of Domains
31.3 Constructing Domains
31.4 Changing the Structure
31.5 Changing the Representation
31.6 Domain Categories e e e e e e
317 Parents e e e
31.8 Constructing Subdomains
31.9 Operations forDomains
31.10 Attributes and Properties of Elements
31.11 Comparison Operations for Elements
31.12 Arithmetic Operations for Elements
31.13 Relations Between Domains Lo
31.14 Useful Categories of Elements

31.15 Useful Categories for all ElementsofaFamily

382
382
384
384
385
386
386
386

388
388
389
390
390
392
393
394

396
396
396
397
403
405
407
408
409

32

33

34

35

36

GAP - Reference Manual

Mappings

32.1 IsDirectProductElement (Filter)
322 Creating Mappingso e e e e e e e
32.3 Properties and Attributes of (General) Mappings
32.4 Imagesunder Mappings v i it e e e e e e e e
32.5 Preimages under Mappings Lo
32.6 Arithmetic Operations for General Mappings
327 Mappings which are Compatible with Algebraic Structures
32.8 Magma Homomorphisms
32.9 Mappings that Respect Multiplication
32.10 Mappings that Respect Addition
32.11 Linear Mappings o o i i e e e e e e
32.12 Ring Homomorphisms
32.13 General Mappings e e e e e e
32.14 Technical Matters Concerning General Mappings

Relations

33.1 General Binary Relations
33.2 Properties and Attributes of Binary Relations
33.3 Binary Relationson Points
33.4 Closure Operations and Other Constructors
33.5 Equivalence Relations
33.6 Attributes of and Operations on Equivalence Relations
33.7 Equivalence Classes o i e e e

Orderings

34.1 IsOrdering (Filter) e e e e e
342 Building new orderings Lo
34.3 Properties and basic functionality
34.4 Orderings on families of associative words

Magmas

35.1 Magma Categories o u e e e e e e e e e e e e e
352 Magma Generation u e e e e e e e e e e
35.3 Magmas Defined by Multiplication Tables
35.4 Attributes and Properties for Magmas Lo

Words

36.1 Categories of Words and Nonassociative Words
36.2 Comparisonof Words
36.3 Operations for Words L
36.4 FreeMagmas e e e
36.5 External Representation for Nonassociative Words

10

435
435
436
439
440
442
444
444
445
445
447
448
449
450
450

453
453
454
456
457
458
460
460

462
462
462
463
464

469
469
470
473
475

GAP - Reference Manual

37 Associative Words

38

39

37.1
37.2
37.3
374
37.5
37.6
37.7
37.8
37.9

Categories of Associative Words
Free Groups, Monoids and Semigroups
Comparison of Associative Words oo
Operations for Associative Words
Operations for Associative Words by their Syllables
Representations for Associative Words
The External Representation for Associative Words
Straight Line Programs
Straight Line Program Elements,

Rewriting Systems

38.1
38.2
38.3
38.4
38.5

Operations on rewriting SyStems v v vttt
Operations on elements of the algebra.
Properties of rewriting systems Lo Lo
Rewriting in Groups and Monoids,
Developing rewriting Systems oo e

Groups

39.1
39.2
39.3
39.4
39.5
39.6
39.7
39.8
39.9
39.10
39.11
39.12
39.13
39.14
39.15
39.16
39.17
39.18
39.19
39.20
39.21
39.22
39.23
39.24
39.25
39.26

Group Elements
Creating Groups o v v i it e e e e e e e
Subgroups e e e
Closures of (Sub)groups
Expressing Group Elements as Words in Generators
Structure Descriptions L. e e e e
COSBLS . . o o o
Transversals L
Double Cosets e
Conjugacy CIasses o v v i i e e e e e e e
Normal Structure o e
Specific and Parametrized Subgroups
Sylow Subgroups and Hall Subgroups
Subgroups characterized by prime powers
Group Properties L
Numerical Group Attributes
Subgroup Series e e e
Factor Groups e
Sets of Subgroups e
Subgroup Lattice
Specific Methods for Subgroup Lattice Computations
Special Generating Sets
I1-Cohomology e
Schur Covers and Multipliers L
Tests for the Availability of Methods
Specific functions for Normalizer calculation

11

485
485
486
487
488
491
492
494
494
500

502
502
504
505
505
506

40

41

42

43

GAP - Reference Manual

Group Homomorphisms

40.1 Creating Group Homomorphisms
40.2 Operations for Group Homomorphisms
40.3 Efficiency of Homomorphismso
40.4 Homomorphism for very large groups
40.5 Nice Monomorphisms oL e
40.6 Group Automorphisms e e
40.7 Groups of Automorphisms
40.8 Calculating with Group Automorphisms
40.9 Searching for Homomorphisms o oo
40.10 Representations for Group Homomorphisms
Group Actions

41.1 About Group ACHONS« v v v vt e e e e e e e e e e e
412 BasiCACHONS e e
41.3 Action on canonical representatives oo e
41.4 Orbits o o e e
41.5 Stabilizers e
41.6 Elements with Prescribed Images
41.7 The Permutation Image of an Action
41.8 Actionofagrouponitself oo
41.9 Permutations Induced by Elements and Cycles
41.10 Testsfor Actions L e e e e e e e
41.11 Block Systems L e e e
41.12 External Sets L e e
Permutations

42.1 IsPerm (Filter) e
42.2 Comparison of Permutations
42.3 Moved Points of Permutations Lo
424 Signand Cycle Structure e
42.5 Creating Permutations L Lo
Permutation Groups

43.1 IsPermGroup (Filter)
432 The Natural Action e
43.3 Computing a Permutation Representation
434 Symmetric and Alternating Groupso
43.5 Primitive Groups e e e
43.6 Stabilizer Chains
43.7 Randomized Methods for Permutation Groups
43.8 Construction of Stabilizer Chains L.
439 Stabilizer ChainRecords oL o
43.10 Operations for Stabilizer Chains
43.11 Low Level Routines to Modify and Create Stabilizer Chains
43.12 Backtrack L.

43.13 Working with large degree permutation groups

12

570
570
573
574
575
576
577
579
580
581
584

587
587
588
592
592
594
596
596
598
599
601
603
604

610
610
612
612
614
614

44

45

46

47

GAP - Reference Manual

Matrix Groups

44.1 IsMatrixGroup (Filter)
44.2 Attributes and Properties for Matrix Groups oL
443 Actions of Matrix Groups oL
444 GLandSL
44.5 Invariant Forms
44.6 Matrix Groups in CharacteristicO
447 Acting OnRightand OnLeft

Polycyclic Groups

45.1 Polycyclic Generating Systemso
452 ComputingaPecgs
45.3 Defining a Pcgs Yourself
454 Elementary Operations foraPcgs L.
45.5 Elementary Operations for a Pcgs and an Element
45.6 Exponents of Special Products
45.7 Subgroups of Polycyclic Groups - Induced Pcgs
45.8 Subgroups of Polycyclic Groups — Canonical Pcgs
45.9 Factor Groups of Polycyclic Groups —ModuloPcgs
45.10 Factor Groups of Polycyclic Groups in their Own Representation
45.11 Pcgs and Normal Series Lo
45.12 Sum and Intersectionof Pcgs
45.13 Special Pcgs
45.14 Action on Subfactors DefinedbyaPcgs
45.15 Orbit Stabilizer Methods for Polycyclic Groups
45.16 Operations which have Special Methods for Groups with Pcgs
45.17 Conjugacy Classes in Solvable Groups

Pc Groups

46.1 Thefamily pcgs L.
46.2 Elements of pc groups e e e
46.3 Pcgroups versus fpgroups oL
46.4 Constructing Pc Groups
46.5 Computing PcGroups e
46.6 SavingaPcGroup
46.7 Operations for Pc Groups L
46.8 2-Cohomology and Extensions
46.9 CodingaPcPresentation
46.10 Random Isomorphism Testing

Finitely Presented Groups

47.1 IsSubgroupFpGroup and IsFpGroup
47.2 Creating Finitely Presented Groups
47.3 Comparison of Elements of Finitely Presented Groups
474 Preimagesinthe Free Group
47.5 Operations for Finitely Presented Groups
47.6 Coset Tables and Coset Enumeration

13

636
636
637
638
638
640
641
644

645
645
646
647
647
648
650
651
653
654
656
657
661
662
664
666
666
666

668
669
670
670
671
674
675
675
675
679
680

48

49

50

51

GAP - Reference Manual

47.7 Standardization of cosettables oL oL oL
47.8 Coset tables for subgroups in the whole group
47.9 Augmented Coset Tables and Rewriting
47.10 Low Index Subgroups
47.11 Converting Groups to Finitely Presented Groups
47.12 New Presentations and Presentations for Subgroups
47.13 Preimages under Homomorphisms from an FpGroup
47.14 Quotient Methods
47.15 Abelian Invariants for Subgroups Lo
47.16 Testing Finiteness of Finitely Presented Groups

Presentations and Tietze Transformations

48.1 Creating Presentations
48.2 Subgroup Presentations Lo
48.3 RelatorsinaPresentation L L o
48.4 Printing Presentations e e e
48.5 Changing Presentations L. L
48.6 Tietze Transformationso
48.7 Elementary Tietze Transformations
48.8 Tietze Transformations that introduce new Generators
48.9 Tracing generator images through Tietze transformations
48.10 The Decoding Tree Procedure
48.11 Tietze Options o v v v v e i e e e e e e e e e e

Group Products

49.1 DirectProducts e e
49.2 Semidirect Products
493 Subdirect Products
494 Wreath Products e
495 FreeProducts
49.6 Embeddings and Projections for Group Products

Group Libraries

50.1 BasicGroups. o e e e e
50.2 Classical Groups v v v i e e e e e
50.3 Conjugacy Classes in Classical Groups
50.4 Constructors for Basic Groupso
50.5 Selection Functions L
50.6 Finite Perfect Groups
50.7 Irreducible Maximal Finite Integral Matrix Groups

Semigroups and Monoids

ST.T Semigroups oL e e e e e e e
512 Monoids
51.3 Inverse semigroups and monoids
51.4 Properties of Semigroups
51.5 Ideals of semigroups L. e e e e

14

691
693
693
694
695
698
699
700
703
705

707
707
710
714
715
717
718
721
723
726
728
731

734
734
735
736
737
739
740

741
742
746
752
753
753
755
760

51.6
51.7
51.8
519

GAP - Reference Manual

Congruences for sSemigroupso et e e e
QUOLIENES e e
Green’s Relations L L
Rees Matrix Semigroups o ... e e

52 Finitely Presented Semigroups and Monoids

52.1
52.2
523
524
525
52.6

IsSubsemigroupFpSemigroup (Filter)
Creating Finitely Presented Semigroups and Monoids
Comparison of Elements of Finitely Presented Semigroups
Preimages in the Free Semigroup or Monoid
Rewriting Systems and the Knuth-Bendix Procedure
Todd-Coxeter Procedure

53 Transformations

53.1
53.2
533
534
535
53.6
53.7

The family and categories of transformations
Creating transformations
Changing the representation of a transformation
Operators for transformations
Attributes for transformations oL Lo
Displaying transformations
Semigroups of transformations Lo Lo

54 Partial permutations

54.1
54.2
54.3
54.4
54.5
54.6
54.7

The family and categories of partial permutations
Creating partial permutationso
Attributes for partial permutations oL oL
Changing the representation of a partial permutation
Operators and operations for partial permutations
Displaying partial permutations e
Semigroups and inverse semigroups of partial permutations

55 Additive Magmas

55.1
55.2
553
554

56 Rings
56.1
56.2
56.3
56.4
56.5
56.6
56.7
56.8
56.9

(Near-)Additive Magma Categories v v v v v i vt
(Near-)Additive Magma Generation
Attributes and Properties for (Near-)Additive Magmas
Operations for (Near-)Additive Magmas

Generating Rings
Idealsof Rings
Rings WithOne
Propertiesof Rings
Units and Factorizations e
EuclideanRings
GedandLem 00 oL
Homomorphisms of Rings,
Small Rings e

15

779
780
781
783

792
794
795
796
796
798
800

801
802
803
806
808
810
820
820

825
827
827
831
839
840
844
845

850
850
852
854
855

57

58

59

60

61

62

GAP - Reference Manual

Modules

57.1 Generatingmodules L
57.2 Submodules e e
573 FreeModules e e

Fields and Division Rings

58.1 GeneratingFields
58.2 Subfieldsof Fields e
583 GaloisS ACtioOn e e e

Finite Fields

59.1 Finite Field Elements
59.2 Operations for Finite Field Elements
59.3 Creating Finite Fields
59.4 Frobenius Automorphisms Lo L
59.5 Conway Polynomials
59.6 Printing, Viewing and Displaying Finite Field Elements

Abelian Number Fields

60.1 Construction of Abelian Number Fields,
60.2 Operations for Abelian Number Fields
60.3 Integral Bases of Abelian Number Fields
60.4 Galois Groups of Abelian Number Fields
60.5 Gaussians e e

Vector Spaces

61.1 IsLeftVectorSpace (Filter) i
61.2 Constructing Vector Spaces
61.3 Operations and Attributes for Vector Spaces
61.4 Domains of Subspaces of Vector Spaces
61.5 Basesof Vector Spaces
61.6 Operations for Vector Space Bases
61.7 Operations for Special Kindsof Bases
61.8 Mutable Bases
61.9 Rowand Matrix Spaces e
61.10 Vector Space Homomorphisms 0.
61.11 Vector Spaces Handled By Nice Bases
61.12 How to Implement New Kinds of Vector Spaces

Algebras

62.1 InfoAlgebra(InfoClass)
62.2 Constructing Algebras by Generators
62.3 Constructing Algebras as Free Algebras,
62.4 Constructing Algebras by Structure Constants
62.5 Some Special Algebras
62.6 Subalgebras e e
627 Idealsof Algebras L

16

876
876
878
879

882
882
884
886

890
890
892
895
896
897
898

900
900
902
903
905
907

908
908
908
910
910
911
913
915
916
918
922
925
927

63

64

65

66

GAP - Reference Manual

62.8 Categories and Properties of Algebras
62.9 Attributes and Operations for Algebras
62.10 Homomorphisms of Algebras
62.11 Representations of Algebras L

Finitely Presented Algebras

Lie Algebras

64.1 LieObjects e e e e e
64.2 Constructing Liealgebras oL o oo
64.3 Distinguished Subalgebras
64.4 Seriesofldeals L
64.5 Propertiesofalie Algebra
64.6 Semisimple Lie Algebras and Root Systems
64.7 Semisimple Lie Algebras and Weyl Groups of Root Systems
64.8 Restricted Lie algebras
64.9 The Adjoint Representation L o
64.10 Universal Enveloping Algebras
64.11 Finitely Presented Lie Algebras,
64.12 Modules over Lie Algebras and Their Cohomology
64.13 Modules over Semisimple Lie Algebras
64.14 Admissible Latticesin UEA o
64.15 Tensor Products and Exterior and Symmetric Powers

Magma Rings

65.1 FreeMagmaRings.
65.2 Elements of Free Magma Rings
65.3 Natural Embeddings related to MagmaRings
65.4 Magma Rings modulo Relations
65.5 Magma Rings modulo the Span of a Zero Element
65.6 Technical Details about the Implementation of Magma Rings

Polynomials and Rational Functions

66.1 Indeterminates e e e
66.2 Operations for Rational Functions
66.3 Comparison of Rational Functions
66.4 Properties and Attributes of Rational Functions
66.5 Univariate Polynomials
66.6 Polynomials as Univariate Polynomials in one Indeterminate
66.7 Multivariate Polynomials
66.8 Minimal Polynomials L
66.9 Cyclotomic Polynomials
66.10 Polynomial Factorization
66.11 Polynomials over the Rationals
66.12 Factorization of Polynomials over the Rationals
66.13 Laurent Polynomials
66.14 Univariate Rational Functions

17

938
941
948
953

964

965
965
967
970
972
973
974
977
980
982
984
985
986
989
990
993

67

68

69

70

GAP - Reference Manual

66.15 Polynomial Rings and Function Fields
66.16 Univariate Polynomial Rings
66.17 Monomial Orderings e e
66.18 Groebner Bases L
66.19 Rational Function Families
66.20 The Representations of Rational Functions
66.21 The Defining Attributes of Rational Functions
66.22 Creation of Rational Functions
66.23 Arithmetic for External Representations of Polynomials
66.24 Cancellation Tests for Rational Functions

Algebraic extensions of fields

67.1 Creation of Algebraic Extensions
67.2 Elements in Algebraic Extensions Lo
67.3 Finding Subfields

p-adic Numbers (preliminary)
68.1 Purep-adicNumbers
68.2 Extensions of the p-adicNumbers

The MeatAxe

69.1 MeatAxeModules
69.2 Module Constructions
69.3 Selecting a Different MeatAxe
69.4 AccessingaModule
69.5 Irreducibility Tests
69.6 Decompositionofmodules
69.7 Finding Submoduleso
69.8 Induced Actions
69.9 Module Homomorphisms L
69.10 Module Homomorphisms for irreducible modules
69.11 MeatAxe Functionality for Invariant Forms
69.12 The Smash MeatAxe i
69.13 Smash MeatAxe Flags L

Tables of Marks

70.1 More about Tablesof Marks
70.2 Table of Marks ObjectsinGAP
70.3 Constructing Tablesof Marks L o
70.4 Printing Tablesof Marks
70.5 Sorting Tablesof Marks oL o
70.6 Technical Details about Tablesof Marks
70.7 Attributes of Tablesof Marks
70.8 Properties of Tablesof Marks
70.9 Other Operations for Tablesof Marks
70.10 Accessing Subgroups via Tablesof Marks
70.11 The Interface between Tables of Marks and Character Tables

71

72

GAP - Reference Manual

70.12 Generic Construction of Tablesof Marks
70.13 The Library of Tablesof Marks

Character Tables

71.1 Some Remarks about Character Theory in GAP
71.2 History of Character Theory Stuffin GAP
71.3 Creating Character Tables
71.4 Character Table Categories
71.5 Conventions for Character Tables
71.6 The Interface between Character Tables and Groups
71.7 Operators for Character Tables
71.8 Attributes and Properties for Groups and Character Tables
71.9 Attributes and Properties only for Character Tables
71.10 Normal Subgroups Represented by Lists of Class Positions
71.11 Operations Concerning Blocks
71.12 Other Operations for Character Tables
71.13 Printing Character Tables L.
71.14 Computing the Irreducible Charactersof aGroup
71.15 Representations Givenby Modules oo
71.16 The Dixon-Schneider Algorithm
71.17 Advanced Methods for Dixon-Schneider Calculations
71.18 Components of aDixonRecord
71.19 An Example of Advanced Dixon-Schneider Calculations
71.20 Constructing Character Tables from Others
71.21 Sorted Character Tables
71.22 Automorphisms and Equivalence of Character Tables
71.23 Storing Normal Subgroup Information

Class Functions

72.1 Why Class Functions?
72.2 Basic Operations for Class Functions
72.3 Comparison of Class Functions
72.4 Arithmetic Operations for Class Functions
72.5 Printing Class Functions
72.6 Creating Class Functions from Values Lists
72.7 Creating Class Functions using Groups
72.8 Operations for Class Functions
72.9 Restricted and Induced Class Functions
72.10 Reducing Virtual Characters L
72.11 Symmetrizations of Class Functions
72.12 Molien Series e e e
72.13 Possible Permutation Characters
72.14 Computing Possible Permutation Characters
72.15 Operations for Brauer Characters
72.16 Domains Generated by Class Functions

GAP - Reference Manual

73 Maps Concerning Character Tables

74

75

76

73.1
73.2
73.3
73.4
73.5
73.6
73.7

Power Maps e
Orbits on Sets of Possible Power Maps
Class Fusions between Character Tables
Orbits on Sets of Possible Class Fusions
Parametrized Maps
Subroutines for the Construction of Power Maps
Subroutines for the Construction of Class Fusions

Unknowns

74.1

More about Unknowns

Monomiality Questions

75.1
75.2
75.3
75.4
75.5

InfoMonomial (InfoClass)
Character Degrees and Derived Length
Primitivity of Characters e
Testing Monomiality e
Minimal Nonmonomial Groups

Using and Developing GAP Packages

76.1
76.2
76.3
76.4
76.5
76.6
76.7
76.8
76.9
76.10
76.11
76.12
76.13
76.14
76.15
76.16
76.17
76.18
76.19
76.20
76.21
76.22
76.23
76.24
76.25

Installing a GAP Package
Loadinga GAPPackage
Functions for GAP Packages
Guidelines for Writing a GAP Package
Structure of a GAP Packageo L o
Writing Documentation and Tools Needed
An Example of a GAPPackage,
File Structure e
Creating the Packagelnfo.gFile
Functions and Variables and Choices of Their Names
Package Dependencies (Requesting one GAP Package from within Another)
Declaration and Implementation Part of a Package
Autoreadable Variables
Standalone Programs in a GAP Package
Having an InfoClass e
The Banner. e
Version Numbers
Testinga GAP package
Access to the GAP Development Version
Version control and continuous integration for GAP packages
Selecting a license fora GAP Package
Releasinga GAP Package
The homepage of aPackage
Some thingstokeepinmind
Package release checklists oL L o

GAP - Reference Manual

77 Replaced and Removed Command Names

78

79

80

77.1
77.2
77.3
77.4
77.5
77.6

Group Actions — Name Changes
Package Interface — Obsolete Functions and Name Changes
Normal Forms of Integer Matrices — Name Changes
Miscellaneous Name Changes or Removed Names
The former .gaprcfile
Semigroup properties e e e e e e e e e

Method Selection

78.1
78.2
78.3
78.4
78.5
78.6
78.7
78.8

Operations and Methods oL
Method Installation
Applicable Methods and Method Selection
Partial Methods
Redispatching
Immediate Methods
Logical Implications v i e e e e
Operations and Mathematical Terms

Creating New Objects

79.1
79.2
79.3
79.4
79.5
79.6
79.7
79.8
79.9
79.10
79.11
79.12
79.13
79.14
79.15
79.16
79.17
79.18
79.19

Creating Categories v v v v i e e e e e e e e e e
Creating Representations e
Creating Attributes and Properties
Creating Other Filters
Creating Operations v v v i vttt e e e e e
Creating Constructors v v v ittt e e e e e e e e
Creating Families
Creating Types o o i e e e e e
Creating Objects L i e
Component Objects i
Positional Objects L
Implementing New List Objects
Example — Constructing Enumerators
Example — Constructing Iterators
Arithmetic Issues in the Implementation of New Kinds of Lists
External Representation
Mutability and Copying oL
Global Variables in the Library
Declaration and Implementation Part

Examples of Extending the System

80.1
80.2
80.3
80.4
80.5
80.6
80.7

Additionof aMethod Lo
Extending the Range of Definition of an Existing Operation
Enforcing Property Tests L
Adding anew Operation e
Adding anew Attribute
Adding anew Representation
Components versus Attributes L L

GAP - Reference Manual

80.8 Addingnew Concepts
80.9 Creating Own Arithmetic Objects

81 An Example — Residue Class Rings
81.1 A First Attempt to Implement Elements of Residue Class Rings
81.2 Why Proceed in a Different Way? L L.
81.3 A Second Attempt to Implement Elements of Residue Class Rings
81.4 Compatibility of Residue Class Rings with Prime Fields
81.5 Further Improvements in Implementing Residue Class Rings

82 An Example — Designing Arithmetic Operations
82.1 New Arithmetic Operations vs. New Objects
82.2 Designing new Multiplicative Objects, .

83 Library Files
83.1 FileTypes o e e e e
83.2 Finding Implementations inthe Library
83.3 Undocumented Variables

84 Interface to the GAP Help System
84.1 Installing and RemovingaHelpBook
84.2 ThemanualsixFile
84.3 TheHelpBookHandler
84.4 Introducing new Viewer for the OnlineHelp

85 Function-Operation-Attribute Triples
85.1 Key Dependent Operations i
85.2 InParent Attributes L e
85.3 Operation Functions

86 Weak Pointers
86.1 Weak Pointer Objects
86.2 Low Level Access Functions for Weak Pointer Objects
86.3 Accessing Weak Pointer Objectsas Lists
86.4 Copying Weak Pointer Objects,
86.5 The GASMAN Interface for Weak Pointer Objects

87 More about Stabilizer Chains
87.1 Generalized Conjugation Technique
87.2 The General Backtrack Algorithm with Ordered Partitions
87.3 Stabilizer Chains for Automorphisms Acting on Enumerators

References

Index

Chapter 1

Preface

Welcome to GAP. This is one of three manuals documenting the core part of GAP, the other being
the GAP Tutorial . and the document called “GAP - Changes from Earlier Versions” .

This preface serves not only to introduce “The GAP Reference Manual”, but also as an introduc-
tion to the whole system.

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the aim
of the system, which is introduced in this reference manual. Since that choice, the system has become
somewhat broader, and you will also find information about algorithms and programming for other
algebraic structures, such as semigroups and algebras.

This manual, the GAP reference manual contains the official definitions of GAP functions. It
should contain all the information needed to use GAP, and is not intended to be read cover-to-cover.

To get started a new user may first look at parts of the GAP Tutorial .

A lot of the functionality of the system and a number of contributed extensions are provided as
“GAP packages” which are developed independently of the core part of GAP and can be loaded into
a GAP session. Each package comes with a its own manual which is also available through the GAP
help system.

This manual is divided into chapters, sections and subsections. Chapter 2 describes the help sys-
tem, which provides access to all the manuals from a running GAP session. Chapter 3 gives technical
advice for running GAP. Chapter 4 introduces the GAP language, and the next chapters deal with the
environment provided by GAP for the user. These are followed by the main bulk of chapters which
are devoted to the various mathematical structures that GAP can handle.

Subsequent sections of this preface explain the structure of the system and provide copyright and
licensing information.

1.1 The GAP System

GAP is a free, open and extensible software package for computation in discrete abstract algebra. The
terms “free” and “open” describe the conditions under which the system is distributed — in brief, it is
free of charge (except possibly for the immediate costs of delivering it to you), you are free fo pass it
on within certain limits, and all of the workings of the system are open for you to examine and change.
Details of these conditions can be found in Section (Reference: Copyright and License).

The system is “extensible” in that you can write your own programs in the GAP language, and use
them in just the same way as the programs which form part of the system (the “library”). Indeed, we
actively support the contribution, refereeing and distribution of extensions to the system, in the form of

23

GAP - Reference Manual 24

“GAP packages”. Further details of this can be found in chapter (Reference: Using and Developing
GAP Packages), and on our website.

Development of GAP began at Lehrstuhl D fiir Mathematik, RWTH-Aachen, under the leadership
of Joachim Neubiiser in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In 1997
coordination of GAP development, now very much an international effort, was transferred to St An-
drews. A complete internal redesign and almost complete rewrite of the system was completed over
the following years and version 4.1 was released in July 1999. A sign of the further internationaliza-
tion of the project was the GAP 4.4 release in 2004, which has been coordinated from Colorado State
University, Fort Collins.

More information on the motivation and development of GAP to date, can be found on our Web
pages in a section entitled “Release history and Prefaces”.

For those readers who have used an earlier version of GAP, an overview of the changes from
GAP 4.4 and a brief summary of changes from earlier versions is given in a separate manual
(Changes: Changes between GAP 4.4 and GAP 4.5).

The system that you are getting now consists of a “core system” and a number of packages. The
core system consists of four main parts.

1. A kernel, written in C, which provides the user with

* automatic dynamic storage management, which the user needn’t bother about in his pro-
gramming;

* aset of time-critical basic functions, e.g. “arithmetic”, operations for integers, finite fields,
permutations and words, as well as natural operations for lists and records;

* an interpreter for the GAP language, an untyped imperative programming language with
functions as first class objects and some extra built-in data types such as permutations and
finite field elements. The language supports a form of object-oriented programming, simi-
lar to that supported by languages like C++ and Java but with some important differences.

* a small set of system functions allowing the GAP programmer to handle files and execute
external programs in a uniform way, regardless of the particular operating system in use.

* a set of programming tools for testing, debugging, and timing algorithms.

* a “read-eval-view” style user interface.

2. A much larger library of GAP functions that implement algebraic and other algorithms. Since
this is written entirely in the GAP language, the GAP language is both the main implementation
language and the user language of the system. Therefore the user can as easily as the original
programmers investigate and vary algorithms of the library and add new ones to it, first for own
use and eventually for the benefit of all GAP users.

3. A library of group theoretical data which contains various libraries of groups, including the
library of small groups (containing all groups of order at most 2000, except those of order 1024)
and others. Large libraries of ordinary and Brauer character tables and Tables of Marks are
included as packages.

4. The documentation. This is available as on-line help, as printable files in PDF format and as
HTML for viewing with a Web browser.

Also included with the core system are some test files and a few small utilities which we hope you
will find useful.

GAP - Reference Manual 25

GAP packages are self-contained extensions to the core system. A package contains GAP
code and its own documentation and may also contain data files or external programs to which the
GAP code provides an interface. These packages may be loaded into GAP using the LoadPackage
(Reference: LoadPackage) command, and both the package and its documentation are then available
just as if they were parts of the core system. Some packages may be loaded automatically, when GAP
is started, if they are present. Some packages, because they depend on external programs, may only
be available on the operating systems where those programs are available (usually UNIX). You should
note that, while the packages included with this release are the most recent versions ready for release
at this time, new packages and new versions may be released at any time and can be easily installed in
your copy of GAP.

With GAP there are two packages (the library of ordinary and Brauer character tables, and the
library of tables of marks) which contain functionality developed from parts of the GAP core system.
These have been moved into packages for ease of maintenance and to allow new versions to be released
independently of new releases of the core system. The library of small groups should also be regarded
as a package, although it does not currently use the standard package mechanism. Other packages
contain functionality which has never been part of the core system, and may extend it substantially,
implementing specific algorithms to enhance its capabilities, providing data libraries, interfaces to
other computer algebra systems and data sources such as the electronic version of the Atlas of Finite
Group Representations; therefore, installation and usage of packages is recommended.

Further details about GAP packages can be found in chapter (Reference:
Using and Developing GAP Packages)), and on the GAP website here:
https://wuw.gap-system.org/Packages/packages.html.

1.2 Authors and Maintainers

GAP is the work of very many people, many of whom still maintain parts of the system. A complete
list of authors, and an approximation to the current list of maintainers can be found on the GAP
World Wide Web site at https://www.gap-system.org/Contacts/People/authors.html and
https://www.gap-system.org/Contacts/People/modules.html. All GAP packages have their
own authors and maintainers. It should however be noted that some packages provide interfaces
between GAP and an external program, a copy of which is included for convenience, and that, in
these cases, we do not claim that the package authors or maintainers wrote, or maintain, this external
program. Similarly, the system and some packages include large data libraries that may have been
computed by many people. We try to make clear in each case what credit is attributable to whom.

We have, for some time, operated a refereeing system for contributed packages, both to ensure the
quality of the software we distribute, and to provide recognition for the authors. We now consider this
to be a refereeing system for modules, and we would note, in particular that, although it does not use
the standard package interface, the library of small groups has been refereed and accepted on exactly
the same basis as the accepted packages.

We also include with this distribution a number of packages which have not (yet) gone through
our refereeing process. Some may be accepted in the future, in other cases the authors have chosen
not to submit them. More information can be found on our World Wide Web site (see Section 1.5).

https://www.gap-system.org/Packages/packages.html
https://www.gap-system.org/Contacts/People/authors.html
https://www.gap-system.org/Contacts/People/modules.html

GAP - Reference Manual 26

1.3 Acknowledgements

Very many people have worked on, and contributed to, GAP over the years since its inception. On our
Web site you will find the prefaces to the previous releases, each of which acknowledges people who
have made special contributions to that release. Even so, it is appropriate to mention here Joachim
Neubiiser whose vision of a free, open and extensible system for computational algebra inspired GAP
in the first place, and Martin Schonert, who was the technical architect of GAP 3 and GAP 4.

1.4 Copyright and License

Copyright © (1987-2019) by the GAP Group,

incorporating the Copyright © 1999, 2000 by School of Mathematical and Computational Sci-
ences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright © 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany,
transferred to St Andrews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In par-
ticular, the copyright of packages distributed with GAP is usually with the package authors or their
institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. For details, see the file LICENSE in the root directory of the GAP
distribution or see http://www.gnu.org/licenses/gpl.html.

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the
address support@gap-system.org. This helps us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as
you would cite another paper that you used (see below for sample citation). Also we would appreciate
if you could inform us about such a paper, which we will add to the GAP bibliography.

Specifically, please refer to

[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming,
Version 4.10.2; 2019 (https://www.gap-system.org)

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further
redistribution. That is to say proprietary modifications will not be allowed. We want all versions of
GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This
should specify what modifications you made in which files. We do not want to take credit or be
blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-
fixes, improvements and new functions. So again we would appreciate it if you would inform us about
all modifications you make.

In addition to the general copyright for GAP set forth above, the following terms apply to the
versions of GAP for Windows.

The executable of GAP for Windows that we distribute was compiled with the gcc compiler
supplied with Cygwin installation (http://cygwin.com/).

The GNU C compiler is

http://www.gnu.org/licenses/gpl.html
mailto://support@gap-system.org
https://www.gap-system.org/Doc/Bib/bib.html
http://cygwin.com/

GAP - Reference Manual 27

Copyright © 2010 Free Software Foundation, Inc.

under the terms of the GNU General Public License (GPL).

The Cygwin API library is also covered by the GNU GPL. The executable we provide is linked
against this library (and in the process includes GPL’d Cygwin glue code). This means that the exe-
cutable falls under the GPL too, which it does anyhow.

The cyggcc_s-1.d11l, cygncurses-10.d1l1l, cygncursesw-10.d11l, cygpanel-10.d11,
cygpopt-0.dll, cygreadline7.dll, cygstart.exe, cygwinl.dll, 1ibW11.d11, mintty.exe,
rxvt.exe and regtool.exe are taken unmodified from the Cygwin distribution. They are copy-
right by RedHat Software and released under the GPL. For more information on Cygwin, see
http://www.cygwin.com.

Please contact support@gap-system. org if you need further information.

1.5 Further Information about GAP

Information about GAP is best obtained from the GAP website
https://www.gap-system.org
There you will find, amongst other things

* directions to the sites from which you can download the current GAP distribution, all accepted
and deposited GAP packages, and a selection of other contributions.

* the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a
Web browser, and indexed for searching.

* information about GAP developers, and about the email addresses available for comment, dis-
cussion and support.

We would particularly ask you to note the following things:

e The GAP Forum - an email discussion forum for comments, discussions or questions about
GAP. You must subscribe to the list before you can post to it, see the website for details. In
particular we will announce new releases in this mailing list.

* The email address support@gap-system.org to which you are asked to send any questions or
bug reports which do not seem likely to be of interest to the whole GAP Forum. Please give
a (short, if possible) self-contained excerpt of a GAP session containing both input and output
that illustrates your problem (including comments of why you think it is a bug) and state the
type of the machine, operating system, (compiler used, if UNIX/Linux) and the version of GAP
you are using (the first line after the GAP 4 banner starting GAP, Version 4...).

* We also ask you to send a brief message to support@gap-system.org when you install GAP.

* The correct form of citation of GAP, which we ask you use whenever you publish scientific
results obtained using GAP.

It finally remains for us to wish you all pleasure and success in using GAP, and to invite your
constructive comment and criticism.

The GAP Group,

19-Jun-2019

http://www.cygwin.com
mailto://support@gap-system.org
https://www.gap-system.org
mailto://support@gap-system.org
mailto://support@gap-system.org

Chapter 2

The Help System

This chapter describes the GAP help system. The help system lets you read the documentation inter-
actively.

2.1 Invoking the Help

The basic command to read GAP’s documentation from within a GAP session is as follows.

?[book :]1[?]topic

For an explanation and some examples see (Tutorial: Help).

Note that the first question mark must appear in the first position after the gap> prompt. The
search strings book and topic are normalized in a certain way (see the end of this section for details)
before the search starts. This makes the search case insensitive and there can be arbitrary white space
after the first question mark.

When there are several manual sections that match the query a numbered list of topics is displayed.
These matches can be accessed with 7number.

There are some further specially handled commands which start with a question mark. They are
explained in Section 2.2.

By default GAP shows the help sections as text in the terminal (window), page by page if the
shown text does not fit on the screen. But there are several other choices to read (other formats of) the
documents: via a viewer for pdf files or via a web browser. This is explained below in Section 2.3.

Details of the string normalization process

Here is a precise description how the search strings book and topic are normalized before a
search starts: backslashes and double or single quotes are removed, parentheses and braces are substi-
tuted by blanks, non-ASCII characters are considered as ISO-latin1 characters and the accented letters
are substituted by their non-accented counterpart. Finally white space is normalized.

2.2 Browsing through the Sections

Help books for GAP are organized in chapters, sections, and subsections. There are a few special
commands starting with a question mark (in the first position after the gap> prompt) which allow
browsing a book section or chapter wise.

7>

7<

28

GAP - Reference Manual 29

The two help commands ?< and 7> allow one to browse through a whole help book. ?7< displays
the section or subsection preceding the previously shown (sub)section, and 7> takes you to the section
or subsection following the previously shown one.

>>

<<

7<< takes you back to the beginning of the current chapter. If you are already at the start of a
chapter 7<< takes you to the beginning of the previous chapter. ?>> takes you to the beginning of the
next chapter.

7-

°+

GAP remembers the last few sections that you have read. ?- takes you to the one that you have
read before the current one, and displays it again. Further applications of 7- take you further back in
this history. 7+ reverses this process, i.e., it takes you back to the section that you have read after the
current one. It is important to note that ?- and 7+ do not alter the history like the other help commands.

?books

This command shows a list of the books which are currently known to the help system. For each
book there is a short name which is used with the book part of the basic help query and there is a long
name which hopefully tells you what this book is about.

A short name which ends in (not loaded) refers to a GAP package whose documentation is
loaded but which needs a call of LoadPackage (76.2.1) before you can use the described functions.

?[book :]sections

7 [book :] [chapters]

These commands show tables of contents for all available, respectively the matching books. For
some books these commands show the same, namely the whole table of contents.

?

&

These commands redisplay the last shown help section. In the form 7& the next preferred help
viewer is used for the display (provided one has chosen several viewers), see SetHelpViewer (2.3.1)
below.

2.3 Changing the Help Viewer

Books of the GAP help system or package manuals can be available in several formats. Currently the
following formats occur (not all of them may be available for all books):

text This is used for display in the terminal window in which GAP is running. Complicated mathe-
matical expressions may not be easy to read in this format.

pdf Adobe’s pdf format. Can be used for printing and onscreen reading on most current systems
(with freely available software). Some manual books contain hyperlinks in this format.

HTML
The format of web pages. Can be used with any web browser. There may be hyperlink informa-
tion available which allows a convenient browsing through the book via cross-references. This
format has the problem that complicated formulae may be not be easy to read since there is no
syntax for formulae in HTML. (Some older manual books use special symbol fonts for formulae

GAP - Reference Manual 30

and need a particular configuration of the web browser for correct display. Some manuals may
use technology for quite sophisticated formula display.)

Depending on your operating system and available additional software you can use several of these
formats with GAP’s help system. This is configured with the following command.

2.3.1 SetHelpViewer

> SetHelpViewer(viewerl, viewer2, ...) (function)

This command takes an arbitrary number of arguments which must be strings describing a viewer.
The recognized viewers are explained below. A call with no arguments shows the current setting.

The first given arguments are those with higher priority. So, if a help section is available in the
format needed by viewerl, this viewer is used. If not, availability of the format for viewer?2 is
checked and so on. Recall that the command 7& displays the last seen section again but with the next
possible viewer in your list, see 2.2.

The viewer "screen" (see below) is always silently appended since we assume that each help
book is available in text format.

If you want to change the default setting you can use a call of SetUserPreference(
"HelpViewers", [... 1); (the list in the second argument containing the viewers you want)
in your gap. ini file (see 3.2).

"screen"

This is the default setting. The help is shown in text format using the Pager (2.4.1) command.
Hint: Text versions of manuals are formatted assuming that your terminal displays at least 80
characters per line, if this is not the case some sections may look very bad. We suggest to
use a terminal in UTF-8 encoding with a fixed width font (this is the default on most modern
Linux/Windows/Mac systems anyway). Terminals in IS0-8859-X encoding will also work
reasonably well (so far, since we do not yet use many special characters which such terminals
could not display).

"firefox", "chrome", "mozilla", "netscape", "konqueror"
If a book is available in HTML format this is shown using the corresponding web browser.
How well this works, for example by using a running instance of this browser, depends on
your particular start script of this browser. (Note, that for some old books the browser must be
configured to use symbol fonts.)

"browser"
(for MS Windows) If a book is available in HTML format, it will be opened using the Windows
default application (typically, a web browser).

"links2", "w3m", "lynx"
If a book is available in HTML format this is shown using the text based "1inks2" (in graphics
mode), w3m or 1lynx web browser, respectively, inside the terminal running GAP. (Formulae in
some older books which use symbol fonts may be unreadable.)

"mac default browser", "browser", "safari", "firefox"
(for Mac OS X) If a book is available in HTML format this is shown in a web browser. The

GAP - Reference Manual 31

options "safari" and "firefox" use the corresponding browsers. The other two options use
the program default browser (which can be set in Safari’s preferences, in the "General" tab).

"Xpdf n
(on X-windows systems) If a book is available in pdf format it is shown with the onscreen
viewer program xpdf (which must be installed on your system). This is a nice program, once it
is running it is reused by GAP for the next displays of help sections.

"acroread"
If a book is available in pdf format it is shown with the onscreen viewer program acroread
(which must be available on your system). This program does not allow remote commands or
startup with a given page. Therefore the page numbers you have to visit are just printed on the
screen. When you are looking at several sections of the same book, this viewer assumes that
the acroread window still exists. When you go to another book a new acroread window is
launched.

"pdf viewer", "skim", "preview", "adobe reader"

(for Mac OS X)) If a book is available in pdf format this is shown in a pdf viewer. The options
"skim", "preview" and "adobe reader" use the corresponding viewers. The other two op-
tions use the pdf viewer which you have chosen to open pdf files from the Finder. Note that
only "Skim" seems to be capable to open a pdf file on a given page. For the other help viewers,
the page numbers where the information can be found will just be printed on the screen. None
of the help viewers seems to be capable of opening a pdf at a given named destination (i. e.,
jump to precisely the place where the information can be found). The pdf viewer "Skim" is
open source software, it can be downloaded from http://skim-app.sourceforge.net/.

"less" or "more"
This is the same as "screen" but additionally the user preferences "Pager" and
""PagerOptions" are set, see the section 2.4 for more details.

Please, send ideas for further viewer commands to support@gap-system.org.

2.4 The Pager Command

GAP contains a builtin pager which shows a text string which does not fit on the screen page by page.
Its functionality is very rudimentary and self-explaining. This is because (at least under UNIX) there
are powerful external standard programs which do this job.

2.4.1 Pager

> Pager(lines) (function)

This function can be used to display a text on screen using a pager, i.e., the text is shown page by
page.

There is a default builtin pager in GAP which has very limited capabilities but should work on any
system.

At least on a UNIX system one should use an external pager program like less or more. GAP
assumes that this program has a command line option +nr which starts the display of the text with line
number nr.

mailto://support@gap-system.org

GAP - Reference Manual 32

Which pager is used can be controlled by setting the user preference "Pager". The default value
is "builtin" which means that the internal pager is used.

On UNIX systems you probably want to set the user preference "Pager" to the value "less" or
"more", you can do this for example in your gap.ini file (see 3.2). In that case you can also tell
GAP a list of standard options for the external pager, via the user preference "PagerOptions".
Example

SetUserPreference("Pager", "less");
SetUserPreference("PagerOptions", ["-f","-r","-a","-i","-M","-j2"]);

The argument I1ines can have one of the following forms:

1. astring (i.e., lines are separated by newline characters)

2. a list of strings (without newline characters) which are interpreted as lines of the text to be
shown

3. arecord with component lines as in 1. or 2. and optional further components
In case 3. currently the following additional components are used:

formatted
can be false or true. If set to true the builtin pager tries to show the text exactly as it is given
(avoiding GAP’s automatic line breaking),

start
must be a positive integer. This is interpreted as the number of the first line shown by the pager
(one may see the beginning of the text via back scrolling).

exitAtEnd
can be false or true. If set to true (the default), the builtin pager is terminated as soon as the
end of the list is shown; otherwise entering the Q key is necessary in order to return from the

pager.

The Pager command is used by GAP’s help system for displaying help sections in text format.
But, of course, it may be used for other purposes as well.

Example

gap> s6 := SymmetricGroup(6);;

gap> words := ["This", "is", "a", "very", "stupid", "example"];;
gap> 1 := List(s6, p-> Permuted(words, p));;

gap> Pager(List(1l, a-> JoinStringsWithSeparator(a," ")));;

Chapter 3

Running GAP

This chapter informs about command line options for GAP (see 3.1), some files in user specific GAP
root directory (see 3.2) and saving and loading a GAP workspace (see 3.3).

3.1 Command Line Options

When you start GAP from a command line or from a script you may specify a number of options on
the command-line to change the default behaviour of GAP. All these options start with a hyphen -,
followed by a single letter. Options must not be grouped, e.g., gap -gq is invalid, use gap -g -q
instead. Some options require an argument, this must follow the option and must be separated by
whitespace, e.g., gap -m 256m, it is not correct to say gap -m256m instead. Certain Boolean options
(-b, -q, -e, -1, -A, -D, -M, -T, -X, -Y) toggle the current value so that gap -b -b is equivalent to
gap and to gap -b -q -b -qetc.

GAP for UNIX will distinguish between upper and lower case options.

As described in the GAP installation instructions (see the INSTALL file in the GAP root directory,
or at https://www.gap-system.org/Download/INSTALL), usually you will not execute GAP di-
rectly. Instead you will call a (shell) script, with the name gap, which in turn executes GAP. This
script sets some options which are necessary to make GAP work on your system. This means that the
default settings mentioned below may not be what you experience when you execute GAP on your
system.

During a GAP session, one can find the current values of command line options in the record
GAPInfo.CommandLineOptions (see GAPInfo (3.5.1)), whose component names are the command
line options (without the leading -).

-A By default, some needed and suggested GAP packages (see 76) are loaded, if present, into the
GAP session when it starts. This option disables (actually toggles) the loading of suggested
packages, which can be useful for debugging or testing. The needed packages (and their needed
packages, and so on) are loaded in any case.

-a memory
GASMAN, the storage manager of GAP uses sbrk to get blocks of memory from (certain)
operating systems and it is required that subsequent calls to sbrk produce adjacent blocks of
memory in this case because GAP only wants to deal with one large block of memory. If the
C function malloc is called for whatever reason, it is likely that sbrk will no longer produce
adjacent blocks, therefore GAP does not use malloc itself.

33

https://www.gap-system.org/Download/INSTALL

GAP - Reference Manual 34

However some operating systems insist on calling malloc to create a buffer when a file is
opened, or for some other reason. In order to catch these cases GAP preallocates a block of
memory with malloc which is immediately freed. The amount preallocated can be controlled
with the -a option. (Most users do not need this option.)

The option argument memory is specified as with the -m option.

-B architecture

Executable binary files that form part of GAP or of a GAP package are kept in a subdirectory
of the bin directory within the GAP or package root directory. The subdirectory name is deter-
mined from the operating system, processor and compiler details when GAP (resp. the package)
is installed. Under rare circumstances, it may be necessary to override this name, and this can
be done using the -B option.

tells GAP to suppress the banner. That means that GAP immediately prints the prompt. This is
useful when, after a while, you get tired of the banner. This option can be repeated to enable the
banner; each -b toggles the state of banner display.

The -D option tells GAP to print short messages when it is reading files or loading modules.
This option may be repeated to toggle this behavior on and off. The message,

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ as GAP file

tells you that GAP has started to read the library file 1ib/kernel.g.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ statically

tells you that GAP has used the compiled version of the library file 1ib/kernel .g. This com-
piled module was statically linked to the GAP kernel at the time the kernel was created.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ dynamically

tells you that GAP has loaded the compiled version of the library file 1ib/kernel.g. This
compiled module was dynamically loaded to the GAP kernel at runtime from a corresponding
.so file.

Obviously, this is a debugging option and most users will not need it.

If your GAP installation uses the readline library for command line editing (see 6.9), this
may be disabled by using -E option. This option may be repeated to toggle this behavior
on and off. If your GAP installation does not use the readline library (you can check by
IsBound (GAPInfo.UseReadline) ; if this is the case), this option will have no effect at all.

tells GAP not to quit when receiving a CTRL-D on an empty input line (see 6.4.1). This option
should not be used when the input is a file or pipe. This option may be repeated to toggle this
behavior on and off.

GAP - Reference Manual 35

-f tells GAP to enable the line editing and history (see 6.8).
In general line editing will be enabled if the input is connected to a terminal. There are rare
circumstances, for example when using a remote session with a corrupted telnet implementation,
when this detection fails. Try using -£ in this case to enable line editing. This option does not
toggle; you must use -n to disable line editing.

-g tells GAP to print a message every time a full garbage collection is performed.

Example
#G FULL 44580/2479kb live 57304/4392kb dead 734/4096kb free

For example, this tells you that there are 44580 live objects that survived a full garbage col-
lection, that 57304 unused objects were reclaimed by it, and that 734 kilobytes from a total
allocated memory of 4096 kilobytes are available afterwards.

-8 -8
If you give the option -g twice, GAP prints a information message every time a partial or full
garbage collection is performed. The message,

Example
#G PART 9405/961kb+live 7525/1324kb+dead 2541/4096kb free

for example, tells you that 9405 objects survived the partial garbage collection and 7525 objects
were reclaimed, and that 2541 kilobytes from a total allocated memory of 4096 kilobytes are
available afterwards.

-h tells GAP to print a summary of all available options (-h is mnemonic for “help”). GAP exits
after printing the summary, all other options are ignored.

-K memory

is like the -o option. But while the latter actually allocates more memory if the system allows
it and then prints a warning inside a break loop the -K options tells GAP not even to try to
allocate more memory. Instead GAP just exits with an appropriate message. The default is that
this feature is switched off. You have to set it explicitly when you want to enable it.

-L filename

The option -L tells GAP to load a saved workspace. See section 3.3.

-1 path_list

can be used to set or modify GAP’s list of root directories (see 9.2). The defaultif no -1 option
is given is the current directory ./. This option can be used several times. Depending on the
-r option a further user specific path is prepended to the list of root directories (the path in
GAPInfo.UserGapRoot).

path_list should be a list of directories separated by semicolons. No whitespace is permit-
ted before or after a semicolon. If path_list does not start or end with a semicolon, then
path_list replaces the existing list of root directories. If path_list starts with a semicolon,
then path_list is appended to the existing list of root directories. If path_list ends with
a semicolon and does not start with one, then the new list of root directories is the concate-
nation of path_list and the existing list of root directories. After GAP has completed its

GAP - Reference Manual 36

startup procedure and displays the prompt, the list of root directories can be seen in the variable
GAPInfo.RootPaths, see GAPInfo (3.5.1).

Usually this option is used inside a startup script to specify where GAP is installed on the
system. The -1 option can also be used by individual users to tell GAP about privately installed
modifications of the library, additional GAP packages and so on. Section 9.2 explains how
several root paths can be used to do this.

GAP will attempt to read the file root_dir/lib/init.g during startup where root_dir is
one of the directories in its list of root directories. If GAP cannot find its init.g file it will
print the following warning.

Example
gap: hmm, I cannot find ’lib/init.g’ maybe use option ’-1 <gaproot>’?

It is not possible to use GAP without the library files, so you must not ignore this warning. You
should leave GAP and start it again, specifying the correct root path using the -1 option.

tells GAP not to check for, nor to use, compiled versions of library files. This option may be
repeated to toggle this behavior on and off.

-m memory

tells GAP to allocate memory bytes at startup time. If the last character of memory is k or K it is
taken as kilobytes, if the last character is m or M memory is taken as megabytes and if it is g or G
it is taken as gigabytes.

This amount of memory should be large enough so that computations do not require too many
garbage collections. On the other hand, if GAP allocates more memory than is physically
available, it will spend most of the time paging.

tells GAP to disable the line editing and history (see 6.8).

You may want to do this if the command line editing is incompatible with another program that
is used to run GAP. For example if GAP is run from inside a GNU Emacs shell window, -n
should be used since otherwise every input line will be echoed twice, once by Emacs and once
by GAP. This option does not toggle; you must use -f to enable line editing.

disables loading obsolete variables (see Chapter 77). This option is used mainly for testing
purposes, for example in order to make sure that a GAP package or one’s own GAP code does
not rely on the obsolete variables.

-0 memory

tells GAP to allocate at most memory bytes without asking. The option argument memory is
specified as with the -m option.

If more than this amount is required during the GAP session, GAP prints an error message and
enters a break loop. In that case you can enter return; which implicitly doubles the amount
given with this option.

tells GAP to be quiet. This means that GAP displays neither the banner nor the prompt gap>.
This is useful if you want to run GAP as a filter with input and output redirection and want to
avoid the banner and the prompts appearing in the output file. This option may be repeated to
disable quiet mode; each -q toggles quiet mode.

GAP - Reference Manual 37

-R The option -R tells GAP not to load a saved workspace previously specified via the -L option.
This option does not toggle.

-r The option -r tells GAP to ignore any user specific configuration files. In particular, the user
specific root directory GAPInfo.UserGapRoot is not added to the GAP root directories and so
gap.ini and gaprc files that may be contained in that directory are not read, see 3.2. Multiple
-r options toggle this behaviour.

-s memory
With this option GAP does not use sbrk to get memory from the operating system. Instead it
uses mmap, malloc or some other command for the amount given with this option to allocate
space for the GASMAN memory manager. Usually GAP does not really use all of this memory,
the options -m, -o, -K still work as documented. This feature assumes that the operating system
only assigns physical memory to the GAP process when it is accessed, so that specifying a large
amount of memory with -s should not cause any performance problem. The advantage of using
this option is that GAP can work together with kernel modules which allocate a lot of memory
with malloc.

The option argument memory is specified as with the -m option.

-T suppresses the usual break loop behaviour of GAP. With this option GAP behaves as if the user
quit immediately from every break loop, and also suppresses displaying any error backtrace.
This is intended for automated testing of GAP. This option may be repeated to toggle this
behavior on and off.

-x length
With this option you can tell GAP how long lines are. GAP uses this value to decide when to
split long lines. After starting GAP you may use SizeScreen (6.12.1) to alter the line length.

The default value is 80, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

-y length
With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should wait. After starting GAP you may use
SizeScreen (6.12.1) to alter the number of lines.

The default value is 24, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

filename ...
Further arguments are taken as filenames of files that are read by GAP during startup, after the
system and private init files are read, but before the first prompt is printed. The files are read in
the order in which they appear on the command line. GAP only accepts up to 14 filenames on
the command line. If a file cannot be opened GAP will print an error message and will abort.

Additional options, -C, -P, -W, -p and -z are used internally by the gac script (see 76.3.11) and/or
on specific operating systems.

GAP - Reference Manual 38

3.2 The gap.ini and gaprec files

When you start GAP, it looks for files with the names gap.ini and gaprc in its root directories (see
9.2), and reads the first gap.ini and the first gaprc file it finds. These files are used for certain
initializations, as follows.

The file gap.ini is read early in the startup process. Therefore, the parameters set in this file
can influence the startup process, such as which packages are automatically loaded (see LoadPackage
(76.2.1)) and whether library files containing obsolete variables are read (see Chapter 77). On the
other hand, only calls to a restricted set of GAP functions are allowed in a gap.ini file. Usually,
it should only contain calls of SetUserPreference (3.2.3). This file can be generated (or updated
when new releases introduce further user preferences) with the command WriteGapIniFile (3.2.3).
This file is read whenever GAP is started, with or without a workspace.

The file gaprc is read after the startup process, before the first input file given on the command
line (see 3.1). So the contents of this file cannot influence the startup process, but all GAP library
functions can be called in this file. When GAP is started with a workspace then the file is read only if
no gaprc file had been read before the workspace was created. (With this setup, it is on the one hand
possible that administrators provide a GAP workspace for several users such that the user’s gaprc
file is read when GAP is started with the workspace, and on the other hand one can start GAP, read
one’s gaprc file, save a workspace, and then start from this workspace without reading one’s gaprc
file again.)

Note that by default, the user specific GAP root directory GAPInfo . UserGapRoot is the first GAP
root directory. So you can put your gap.ini and gaprc files into this directory.

This mechanism substitutes the much less flexible reading of a users .gaprc file in versions of
GAP up to 4.4. For compatibility this . gaprc file is still read if the directory GAPInfo.UserGapRoot
does not exist, see 77.5 how to migrate your old setup.

3.2.1 The gap.ini file

The file gap.ini is read after the declaration part of the GAP library is read, before the declaration
parts of the packages needed and suggested by GAP are read, and before the implementation parts of
GAP and of the packages are read.

The file gap.ini is expected to consist of calls to the function SetUserPreference (3.2.3), see
Section SetUserPreference (3.2.3).

Since the file gap.ini is read before the implementation part of GAP is read, not all GAP
functions may be called in the file. Assignments of numbers, lists, and records are admissible as
well as calls to basic functions such as Concatenation (21.20.1) and JoinStringsWithSeparator
(27.7.20).

Note that the file gap. ini is read also when GAP is started with a workspace.

3.2.2 The gaprec file

If a file gaprc is found it is read after GAP’s init.g, but before any of the files mentioned on the
command line are read. You can use this file for your private customizations. (Many users may be
happy with using just user preferences in the gap. ini file (see above) for private customization.) For
example, if you have a file containing functions or data that you always need, you could read this from
gaprc. Or if you find some of the names in the library too long, you could define abbreviations for
those names in gaprc. The following sample gaprc file does both.

GAP - Reference Manual 39

Example
Read("/usr/you/dat/mygroups.grp");
Ac := Action;
AcHom := ActionHomomorphism;
RepAc := RepresentativeAction;

Note that only one gaprec file is read when GAP is started. When a workspace is created in a GAP
session after a gaprc file has been read then no more gaprc file will be read when GAP is started
with this workspace.

Also note that the file must be called gaprc. If you use a Windows text editor, in particular if
your default is not to show file suffixes, you might accidentally create a file gaprc.txt or gaprc.doc
which GAP will not recognize.

3.2.3 Configuring User preferences

> SetUserPreference([package, Jname, value) (function)
> UserPreference([package, Jname) (function)
> ShowUserPreferences(packagel, package2, ...) (function)
> WriteGapIniFile([dir,][ignorecurrent]) (function)

Some aspects of the behaviour of GAP can be customized by the user via user preferences. Ex-
amples include the way help sections are displayed or the use of colors in the terminal.

User preferences are specified via a pair of strings, the first is the (case insensitive) name of a
package (or "GAP" for the core GAP library) and the second is some arbitrary case sensitive string.

User preferences can be set to some value with SetUserPreference. The current value of a
user preference can be found with UserPreference. In both cases, if no package name is given the
default "GAP" is used. If a user preference is not known or not set then UserPreference returns
fail.

The function ShowUserPreferences with no argument shows in a pager an overview of all
known user preferences together with some explanation and the current value. If one or more strings
packagel, ... are given then only the user preferences for these packages are shown.

The easiest way to make use of user preferences is probably to use the function
WriteGapIniFile, usually without argument. This function creates a file gap.ini in your user
specific GAP root directory (GAPInfo.UserGapRoot). If such a file already exists the function will
make a backup of it first. This newly created file contains descriptions of all known user preferences
and also calls of SetUserPreference for those user preferences which currently do not have their
default value. You can then edit that file to customize (further) the user preferences for future GAP
sessions.

Should a later version of GAP or some packages introduce new user preferences then you can
call WwriteGapIniFile again since it will set the previously known user preferences to their current
values.

Optionally, a different directory for the resulting gap . ini file can be specified as argument dir to
WriteGapIniFile. Another optional argument is the boolean value true, if this is given, the settings
of all user preferences in the current session are ignored.

Note that your gap.ini file is read by GAP very early during its startup process. A conse-
quence is that the value argument in a call of SetUserPreference must be some very basic GAP
object, usually a boolean, a number, a string or a list of those. A few user preferences support

GAP - Reference Manual 40

more complicated settings. For example, the user preference "UseColorPrompt" admits a record
as its value whose components are available only after the GAPDoc package has been loaded,
see ColorPrompt (3.6.1). If you want to specify such a complicated value, then move the correspond-
ing call of SetUserPreference from your gap.ini file into your gaprc file (also in the directory
GAPInfo.UserGapRoot). This file is read much later.

Example
gap> SetUserPreference("Pager", "less");
gap> SetUserPreference ("PagerOptions",
> ["-f", "-xr", "-a", "-i", "-M", "-j2"]);
gap> UserPreference("Pager");
"less"

The first two lines of this example will cause GAP to use the programm less as a pager. This is
highly recommended if less is available on your system. The last line displays the current setting.

3.2.4 DeclareUserPreference

> DeclareUserPreference(record) (function)

This function can be used (also in packages) to introduce new user preferences. It declares a user
preference, determines a default value and contains documentation of the user preference. After dec-
laration a user preference will be shown with ShowUserPreferences (3.2.3) and WriteGapIniFile
(3.2.3).

When this declaration is evaluated it is checked, if this user preference is already set in the current
session. If not the value of the user preference is set to its default. (Do not use fail as default value
since this indicated that a user preference is not set.)

The argument record of DeclareUserPreference must be a record with the following compo-
nents.

name
a string or a list of strings, the latter meaning several preferences which belong together,

description
a list of strings describing the preference(s), one string for each paragraph; if several preferences
are declared together then the description refers to all of them,

default
the default value that is used, or a function without arguments that computes this default value;
if several preferences are declared together then the value of this component must be the list of
default values for the individual preferences.

The following components of record are optional.

check
a function that takes a value as its argument and returns either true or false, depending on
whether the given value is admissible for this preference; if several preferences are declared
together then the number of arguments of the function must equal the length of the name list,

GAP - Reference Manual 41

values
the list of admissible values, or a function without arguments that returns this list,

multi
true or false, depending on whether one may choose several values from the given list or just
one; needed (and useful only) if the values component is present,

package
the name of the GAP package to which the preference is assigned; if the declaration happens
inside a file that belongs to this package then the value of this component is computed, using
GAPInfo.PackageCurrent; otherwise, the default value for package is "GAP",

omitFromGapIniFile
if the value is true then this user preference is ignored by WriteGapIniFile (3.2.3).

Example
gap> UserPreference("MyFavouritePrime");
fail
gap> DeclareUserPreference(rec(
> name:= "MyFavouritePrime",
> description:= ["is not used, serves as an example"],
> default:= 2,
> omitFromGapIniFile:= true));
gap> UserPreference("MyFavouritePrime");
2
gap> SetUserPreference("MyFavouritePrime", 17);
gap> UserPreference("MyFavouritePrime");
17

3.3 Saving and Loading a Workspace

GAP workspace files are binary files that contain the data of a GAP session. One can produce a
workspace file with SaveWorkspace (3.3.1), and load it into a new GAP session using the -L com-
mand line option, see Section 3.1.

One purpose of workspace files is of course the possibility to save a “snapshot” image of the
current GAP workspace in a file.

The recommended way to start GAP is to load an existing workspace file, because this reduces the
startup time of GAP drastically. So if you have installed GAP yourself then you should think about
creating a workspace file immediately after you have started GAP, and then using this workspace file
later on, whenever you start GAP. If your GAP installation is shared between several users, the system
administrator should think about providing such a workspace file.

3.3.1 SaveWorkspace

> SaveWorkspace(filename) (function)

will save a “snapshot” image of the current GAP workspace in the file filename. This image then
can be loaded by another copy of GAP which then will behave as at the point when SaveWorkspace
was called.

GAP - Reference Manual 42

Example

gap> a:=1;

gap> SaveWorkspace("savefile");
true

gap> quit;

SaveWorkspace can only be used at the main gap> prompt. It cannot be included in the body of
a loop or function, or called from a break loop.
3.4 Testing for the System Architecture
34.1 ARCH_IS_UNIX

> ARCH_IS_UNIX () (function)

tests whether GAP is running on a UNIX system (including Mac OS X).

34.2 ARCH_IS_MAC_OS_X

> ARCH_IS_MAC_0S_XQO) (function)

tests whether GAP is running on Mac OS X. Note that on Mac OS X, also ARCH_IS_UNIX (3.4.1)
will be true.

3.4.3 ARCH_IS_WINDOWS

> ARCH_IS_WINDOWS () (function)

tests whether GAP is running on a Windows system.

3.5 Global Values that Control the GAP Session

3.5.1 GAPInfo

> GAPInfo (global variable)

Several global values control the GAP session, such as the command line, the architecture, or
the information about available and loaded packages. Many of these values are accessible as compo-
nents of the global record GAPInfo. Typically, these components are set and read in low level GAP
functions, so changing the values of existing components of GAPInfo “by hand” is not recommended.

Important components are documented via index entries, try the input ??GAPInfo for getting an
overview of these components.

3.6 Coloring the Prompt and Input

GAP provides hooks for functions which are called when the prompt is to be printed and when an
input line is finished.

GAP - Reference Manual 43

An example of using this feature is the following function.

3.6.1 ColorPrompt

> ColorPrompt(bool[, optrec]) (function)

With ColorPrompt (true) ; GAP changes its user interface: The prompts and the user input are
displayed in different colors. Switch off the colored prompts with ColorPrompt (false) ;.

Note that this will only work if your terminal emulation in which you run GAP understands the so
called ANSI color escape sequences —almost all terminal emulations on current UNIX/Linux (xterm,
rxvt, konsole, ...) systems do so.

The colors shown depend on the terminal configuration and cannot be forced from an application.
If your terminal follows the ANSI conventions you see the standard prompt in bold blue and the break
loop prompt in bold red, as well as your input in red.

If it works for you and you like it, put a call of SetUserPreference("UseColorPrompt",
true); in your gap.ini file. If you want a more complicated setting as explained below then put
your SetUserPreference ("UseColorPrompt", rec(...)); callinto your gaprc file.

The optional second argument optrec allows one to further customize the behaviour. It must be
a record from which the following components are recognized:

MarkupStdPrompt
a string or no argument function returning a string containing the escape sequence used for the
main prompt gap> .

MarkupContPrompt
a string or no argument function returning a string containing the escape sequence used for the
continuation prompt > .

MarkupBrkPrompt
a string or no argument function returning a string containing the escape sequence used for the
break prompt brk...> .

MarkupInput
a string or no argument function returning a string containing the escape sequence used for user
input.

TextPrompt
a no argument function returning the string with the text of the prompt, but without any escape
sequences. The current standard prompt is returned by CPROMPT (). But note that changing the
standard prompts makes the automatic removal of prompts from input lines impossible (see 6.2).

PrePrompt
a function called before printing a prompt.

Here is an example.

LoadPackage ("GAPDoc") ;
timeSHOWMIN := 100;
ColorPrompt (true, rec(

GAP - Reference Manual 44

usually cyan bold, see 7TextAttr
MarkupStdPrompt := Concatenation(TextAttr.bold, TextAttr.6),
MarkupContPrompt := Concatenation(TextAttr.bold, TextAttr.6),
PrePrompt := function()

show the ’time’ automatically if at least timeSHOWMIN

if CPROMPT() = "gap> " and time >= timeSHOWMIN then

Print("Time of last command: ", time, " ms\n");

fi;

end))5

Chapter 4

The Programming Language

This chapter describes the GAP programming language. It should allow you in principle to predict
the result of each and every input. In order to know what we are talking about, we first have to look
more closely at the process of interpretation and the various representations of data involved.

4.1 Language Overview

First we have the input to GAP, given as a string of characters. How those characters enter GAP
is operating system dependent, e.g., they might be entered at a terminal, pasted with a mouse into a
window, or read from a file. The mechanism does not matter. This representation of expressions by
characters is called the external representation of the expression. Every expression has at least one
external representation that can be entered to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to an internal
representation. At this point the input is analyzed and inputs that are not legal external representations,
according to the rules given below, are rejected as errors. Those rules are usually called the syntax of
a programming language.

The internal representation created by reading is called either an expression or a statement. Later
we will distinguish between those two terms. However for now we will use them interchangeably. The
exact form of the internal representation does not matter. It could be a string of characters equal to the
external representation, in which case the reading would only need to check for errors. It could be a
series of machine instructions for the processor on which GAP is running, in which case the reading
would more appropriately be called compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or execution.
Later we will distinguish between those two terms too, but for the moment we will use them inter-
changeably. The name hints at the nature of this process, it replaces an expression with the value
of the expression. This works recursively, i.e., to evaluate an expression first the subexpressions are
evaluated and then the value of the expression is computed from those values according to rules given
below. Those rules are usually called the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. Again the form in which such a
value is represented internally does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates an
external representation, i.e., a string of characters again. What you do with this external representation
is up to you. You can look at it, paste it with the mouse into another window, or write it to a file.

45

GAP - Reference Manual 46

Lets look at an example to make this more clear. Suppose you type in the following string of 8
characters

1+ 2 % 3

GAP takes this external representation and creates a tree-like internal representation, which we
can picture as follows

+

/ \

1 *
/\
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3.
Again, to do this GAP first evaluates its subexpressions 2 and 3. However they are so simple that they
are their own value, we say that they are self-evaluating. After this has been done, the rule for * tells
us that the value is the product of the values of the two subexpressions, which in this case is clearly 6.
Combining this with the value of the left operand of the +, which is self-evaluating, too, gives us the
value of the whole expression 7. This is then printed, i.e., converted into the external representation
consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how its value is
computed in terms of the values of the subexpressions. The syntactic rules are given in sections 4.2,
43,44, 4.5, and 4.6, the semantic rules are given in sections 4.7, 4.8, 4.11, 4.12, 4.13, 4.14, 4.15,
4.16,4.17, 4.18, 4.19, 4.20, 4.23, and the chapters describing the individual data types.

4.2 Lexical Structure

Most input of GAP consists of sequences of the following characters.
Digits, uppercase and lowercase letters, SPACE, TAB, NEWLINE, RETURN and the special char-
acters

" ¢ () *
. . <

—
)
|
A~ +
(o)

It is possible to use other characters in identifiers by escaping them with backslashes, but we do not
recommend to use this feature. Inside strings (see section 4.3 and chapter 27) and comments (see 4.4)
the full character set supported by the computer is allowed.

4.3 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called scan-
ning, that assembles the characters into symbols. A symbol is a sequence of characters that form a

GAP - Reference Manual 47

lexical unit. The set of symbols consists of keywords, identifiers, strings, integers, and operator and
delimiter symbols.

A keyword is areserved word (see 4.5). An identifier is a sequence of letters, digits and underscores
(or other characters escaped by backslashes) that contains at least one non-digit and is not a keyword
(see 4.6). An integer is a sequence of digits (see 14), possibly prepended by - and + sign characters.
A string is a sequence of arbitrary characters enclosed in double quotes (see 27).

Operator and delimiter symbols are

+ - * / - - !.
= <> < <= > >= I[
1= . .. -> s ; 1{
[] { } () :

Note also that during the process of scanning all whitespace is removed (see 4.4).

4.4 Whitespaces

The characters SPACE, TAB, NEWLINE, and RETURN are called whitespace characters. Whitespace is
used as necessary to separate lexical symbols, such as integers, identifiers, or keywords. For example
Thorondor is a single identifier, while Th or ondor is the keyword or between the two identifiers
Th and ondor. Whitespace may occur between any two symbols, but not within a symbol. Two or
more adjacent whitespace characters are equivalent to a single whitespace. Apart from the role as
separator of symbols, whitespace characters are otherwise insignificant. Whitespace characters may
also occur inside a string, where they are significant. Whitespace characters should also be used freely
for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and continues to
the end of the line on which the comment character appears. The whole comment, including # and the
NEWLINE character is treated as a single whitespace. Inside a string, the comment character # loses
its role and is just an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if 1 < 0 then # if i is negative

a := -i; # take its additive inverse
else # otherwise

a := i, # take itself
fi;

(which by the way shows that it is possible to write superfluous comments). However the first
statement is not equivalent to

ifi<Othena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly then
and a, and else and a must be separated.

GAP - Reference Manual 48

4.5 Keywords

Keywords are reserved words that are used to denote special operations or are part of statements. They
must not be used as identifiers. The list of keywords is contained in the GAPInfo.Keywords compo-
nent of the GAPInfo record (see 3.5.1). We will show how to print it in a nice table, demonstrating at
the same time some list manipulation techniques:

Example

gap> keys:=SortedList(GAPInfo.Keywords);; l:=Length(keys);;
gap> arr:= List([0 .. Int(1/4)-1 1, i-> keys{ 4*xi + [1 .. 41 });;
gap> if 1 mod 4 <> O then Add(arr, keys{[4*Int(1/4) + 1 .. 1 1}); fi;
gap> Length(keys); PrintArray(arr);
35
[[Assert, Info, IsBound, QUIT 1,

[TryNextMethod, Unbind, and, atomic],

[break, continue, do, elif 1],

[else, end, false, fi],

[for, function, if, in],

[local, mod, not, od],

[or, quit, readonly, readwrite],

[rec, repeat, return, then],

[true, until, while] 1]

Note that (almost) all keywords are written in lowercase and that they are case sensitive. For
example else is a keyword; Else, eLsE, ELSE and so forth are ordinary identifiers. Keywords must
not contain whitespace, for example el if is not the same as elif.

Note: Several tokens from the list of keywords above may appear to be normal identifiers repre-
senting functions or literals of various kinds but are actually implemented as keywords for technical
reasons. The only consequence of this is that those identifiers cannot be re-assigned, and do not ac-
tually have function objects bound to them, which could be assigned to other variables or passed to
functions. These keywords are true, false, Assert (7.5.3), IsBound (4.8.1), Unbind (4.8.2), Info
(7.4.5) and TryNextMethod (78.4.1).

Keywords atomic, readonly, readwrite are not used at the moment. They are reserved for the
future version of GAP to prevent their accidental use as identifiers.

4.6 Identifiers

An identifier is used to refer to a variable (see 4.8). An identifier usually consists of letters, digits, un-
derscores _, and “at”-characters @, and must contain at least one non-digit. An identifier is terminated
by the first character not in this class. Note that the “at”-character @ is used to implement namespaces,
see Section 4.10 for details.

Examples of valid identifiers are

a foo alongIdentifier
hello Hello HELLO
x100 100x _100

some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords
abc@def

GAP - Reference Manual 49

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed by a
character is equivalent to the character, except that this escape sequence is considered to be an ordinary
letter. For example

G\ (2\,5\)

is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example * and \mod are
identifiers.

The length of identifiers is not limited, however only the first 1023 characters are significant. The
escape sequence \NEWLINE is ignored, making it possible to split long identifiers over multiple lines.

4.6.1 IsValidldentifier

> IsValidIdentifier(str) (function)

returns true if the string str would form a valid identifier consisting of letters, digits and under-
scores; otherwise it returns false. It does not check whether str contains characters escaped by a
backslash \.

Note that the “at”-character is used to implement namespaces for global variables in packages.
See 4.10 for details.

4.7 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed to produce
a side effect and return no value are called statements (see 4.14). Expressions appear as right hand
sides of assignments (see 4.15), as actual arguments in function calls (see 4.11), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression, whose
value is the integer 12. The external representation of this integer is the character sequence 12, i.e.,
this sequence is output if the integer is printed. This sequence is another expression whose value is the
integer 12. The process of finding the value of an expression is done by the interpreter and is called
the evaluation of the expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals (see
4.8,4.11, 14, 42,27,4.23, 21, 29), are the simplest cases of expressions.

Expressions, for example the simple expressions mentioned above, can be combined with the
operators to form more complex expressions. Of course those expressions can then be combined
further with the operators to form even more complex expressions. The operators fall into three
classes. The comparisons are =, <>, <, <=, >, >=_and in (see 4.12 and 30.6). The arithmetic operators
are +, -, *, /, mod, and ~ (see 4.13). The logical operators are not, and, and or (see 20.4).

The following example shows a very simple expression with value 4 and a more complex expres-
sion.

Example

gap> 2 * 2;

4

gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true

GAP - Reference Manual 50

For the precedence of operators, see 4.12.

4.8 Variables

A variable is a location in a GAP program that points to a value. We say the variable is bound to this
value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a value by
assigning this value to the variable (see 4.15). Because of this we sometimes say that a variable that is
not bound to any value has no assigned value. Assignment is in fact the only way by which a variable,
which is not an argument of a function, can be bound to a value. After a variable has been bound to a
value an assignment can also be used to bind the variable to another value.

A special class of variables is the class of arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call (see 4.11).

Each variable has a name that is also called its identifier. This is because in a given scope an
identifier identifies a unique variable (see 4.6). A scope is a lexical part of a program text. There
is the global scope that encloses the entire program text, and there are local scopes that range from
the function keyword, denoting the beginning of a function definition, to the corresponding end
keyword. A local scope introduces new variables, whose identifiers are given in the formal argument
list and the local declaration of the function (see 4.23). Usage of an identifier in a program text
refers to the variable in the innermost scope that has this identifier as its name. Because this mapping
from identifiers to variables is done when the program is read, not when it is executed, GAP is said to
have lexical scoping. The following example shows how one identifier refers to different variables at
different points in the program text.

g := 0; # global variable g
x := function (a, b, c)
local vy;
g 1= C; # c refers to argument c of function x

y := function (y)
local d, e, f;
d :=y; # y refers to argument y of function

<

e := b; # b refers to argument b of function x
f :=g; # g refers to global variable g
return d + e + £f;
end;
return y(a); # y refers to local y of function x
end;

It is important to note that the concept of a variable in GAP is quite different from the concept of
a variable in most compiled programming languages.

In those languages a variable denotes a block of memory. The value of the variable is stored in this
block. So in those languages two variables can have the same value, but they can never have identical
values, because they denote different blocks of memory. Note that some languages have the concept of
a reference argument. It seems as if such an argument and the variable used in the actual function call
have the same value, since changing the argument’s value also changes the value of the variable used
in the actual function call. But this is not so; the reference argument is actually a pointer to the variable
used in the actual function call, and it is the compiler that inserts enough magic to make the pointer

GAP - Reference Manual 51

invisible. In order for this to work the compiler needs enough information to compute the amount of
memory needed for each variable in a program, which is readily available in the declarations.

In GAP on the other hand each variable just points to a value, and different variables can share the
same value.

4.8.1 IsBound (for a global variable)

> IsBound(ident) (function)

IsBound returns true if the variable ident points to a value, and false otherwise.
For records and lists IsBound can be used to check whether components or entries, respectively,
are bound (see Chapters 29 and 21).

4.8.2 Unbind (unbind a variable)

> Unbind(ident) (function)

deletes the identifier ident. If there is no other variable pointing to the same value as ident was,
this value will be removed by the next garbage collection. Therefore Unbind can be used to get rid of
unwanted large objects.

For records and lists Unbind can be used to delete components or entries, respectively (see Chap-
ters 29 and 21).

4.9 More About Global Variables

The vast majority of variables in GAP are defined at the outer level (the global scope). They are used
to access functions and other objects created either in the GAP library or packages or in the user’s
code.

Note that for packages there is a mechanism to implement package local namespaces on top of
this global namespace. See Section 4.10 for details.

Certain special facilities are provided for manipulating global variables which are not available for
other types of variable (such as local variables or function arguments).

First, such variables may be marked read-only using MakeReadOnlyGlobal (4.9.2). In which
case attempts to change them will fail. Most of the global variables defined in the GAP library are so
marked. read-only variables can be made read-write again by calling MakeReadWriteGlobal (4.9.3).
GAP also features constant variables, which are created by calling MakeConstantGlobal (4.9.4).
Constant variables can never be changed. In some cases, GAP can optimise code which uses constant
variables, as their value never changes. In this version GAP these optimisations can be observed by
printing the function back out, but this behaviour may change in future.

Example

gap> globali := 1 + 2;;

gap> globalb := true;;

gap> MakeConstantGlobal("globali");
gap> MakeConstantGlobal("globalb");
gap> f := function()

> if globalb then

> return globali + 1;

> else

GAP - Reference Manual 52

> return globali + 2;
> fi;
> end;;
gap> Print(f);
function ()
return 3 + 1;

end

Second, a group of functions are supplied for accessing and altering the values assigned to global
variables. Use of these functions differs from the use of assignment, Unbind (4.8.2) and IsBound
(4.8.1) statements, in two ways. First, these functions always affect global variables, even if local
variables of the same names exist. Second, the variable names are passed as strings, rather than being
written directly into the statements.

Note that the functions NamesGVars (4.9.9), NamesSystemGVars (4.9.10), NamesUserGVars
(4.9.11), and TemporaryGlobalVarName (4.9.12) deal with the global namespace.

4.9.1 IsReadOnlyGlobal

> IsReadOnlyGlobal (name) (function)

returns true if the global variable named by the string name is read-only and false otherwise
(the default).

4.9.2 MakeReadOnlyGlobal

> MakeReadOnlyGlobal (name) (function)

marks the global variable named by the string name as read-only.
A warning is given if name has no value bound to it or if it is already read-only.

4.9.3 MakeReadWriteGlobal

> MakeReadWriteGlobal (name) (function)

marks the global variable named by the string name as read-write.
A warning is given if name is already read-write.

Example
gap> xx := 17;
17
gap> IsReadOnlyGlobal("xx");
false
gap> xx := 15;
15

gap> MakeReadOnlyGlobal ("xx");

gap> xx := 16;

Variable: ’xx’ is read only

not in any function

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or

GAP - Reference Manual 53

you can ’return;’ after making it writable to continue
brk> quit;

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal ("xx");

gap> xx := 16;

16

gap> IsReadOnlyGlobal ("xx");

false

4.9.4 MakeConstantGlobal

> MakeConstantGlobal (name) (function)

MakeConstantGlobal (name) marks the global variable named by the string name as constant.
A constant variable can never be changed or made read-write. Constant variables can only take an
integer value, true or false. There is a limit on the size of allowed integers.

A warning is given if name is already constant.

4.9.5 ValueGlobal

> ValueGlobal (name) (function)

returns the value currently bound to the global variable named by the string name. An error is
raised if no value is currently bound.

4.9.6 IsBoundGlobal

> IsBoundGlobal (name) (function)

returns true if a value currently bound to the global variable named by the string name and false
otherwise.
4.9.7 UnbindGlobal

> UnbindGlobal (name) (function)

removes any value currently bound to the global variable named by the string name. Nothing is
returned.

A warning is given if name was not bound. The global variable named by name must be writable,
otherwise an error is raised.

4.9.8 BindGlobal

> BindGlobal (name, val) (function)
> BindConstant (name, val) (function)

GAP - Reference Manual 54

BindGlobal and BindConstant set the global variable named by the string name to the value
val, provided that variable is writable. BindGlobal makes the resulting variable read-only, while
BindConstant makes it constant. If name already had a value, a warning message is printed.

This is intended to be the normal way to create and set “official” global variables (such as opera-
tions, filters and constants).

Caution should be exercised in using these functions, especially UnbindGlobal (4.9.7) as unex-
pected changes in global variables can be very confusing for the user.

Example
gap> xx := 16;
16
gap> IsReadOnlyGlobal("xx");
false
gap> ValueGlobal("xx");
16
gap> IsBoundGlobal("xx");
true

gap> BindGlobal ("xx",17);

#W BIND_GLOBAL: variable ‘xx’ already has a value
gap> xx;

17

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal("xx");

gap> Unbind(xx) ;

4.9.9 NamesGVars

> NamesGVars () (function)

This function returns an immutable (see 12.6) sorted (see 21.19) list of all the global variable
names known to the system. This includes names of variables which were bound but have now been
unbound and some other names which have never been bound but have become known to the system
by various routes.

4.9.10 NamesSystemGVars

> NamesSystemGVars () (function)

This function returns an immutable sorted list of all the global variable names created by the GAP
library when GAP was started.

4.9.11 NamesUserGVars

> NamesUserGVars() (function)

This function returns an immutable sorted list of the global variable names created since the library
was read, to which a value is currently bound.

GAP - Reference Manual 55

4.9.12 TemporaryGlobalVarName

> TemporaryGlobalVarName ([prefix]) (function)

returns a string that can be used as the name of a global variable that is not bound at the time when
TemporaryGlobalVarName is called. The optional argument prefix can specify a string with which
the name of the global variable starts.

4.10 Namespaces for GAP packages

As mentioned in Section 4.9 above all global variables share a common namespace. This can relatively
easily lead to name clashes, in particular when many GAP packages are loaded at the same time. To
give package code a way to have a package local namespace without breaking backward compatibility
of the GAP language, the following simple rule has been devised:

If in package code a global variable that ends with an “at”-character @ is accessed in any way,
the name of the package is appended before accessing it. Here, “package code” refers to everything
which is read with ReadPackage (76.3.1). As the name of the package the entry PackageName in its
PackageInfo.g file is taken. As for all identifiers, this name is case sensitive.

For example, if the following is done in the code of a package with name xYz:

Example

gap> a@ := 12;

Then actually the global variable a@xYz is assigned. Further accesses to a@ within the package code
will all be redirected to a@xYz. This includes all the functions described in Section 4.9 and indeed all
the functions described Section 79.18 like for example DeclareCategory (79.18.1). Note that from
code in the same package it is still possible to access the same global variable via a@xYz explicitly.

All other code outside the package as well as interactive user input that wants to refer to that
variable a@xYz must do so explicitly by using a@xYz.

Since in earlier releases of GAP the “at”-character @ was not a legal character (without using
backslashes), this small extension of the language does not break any old code.

4.11 Function Calls

4.11.1 Function Call With Arguments

function-var ([arg-expr[, arg-expr, ...11)

The function call has the effect of calling the function function-var. The precise semantics are
as follows.

First GAP evaluates the function-var. Usually function-var is a variable, and GAP does
nothing more than taking the value of this variable. It is allowed though that function-var
is a more complex expression, such as a reference to an element of a list (see Chapter 21)
list-var [int-expr], or to a component of a record (see Chapter 29) record-var.ident. In
any case GAP tests whether the value is a function. If it is not, GAP signals an error.

Next GAP checks that the number of actual arguments arg-exprs agrees with the number of
formal arguments as given in the function definition. If they do not agree GAP signals an error. An
exception is the case when the function has a variable length argument list, which is denoted by adding

GAP - Reference Manual 56

. after the final argument. In this case there must be at least as many actual arguments as there are
formal arguments before the final argument and can be any larger number (see 4.23 for examples).

Now GAP allocates for each formal argument and for each formal local (that is, the identifiers in
the 1local declaration) a new variable. Remember that a variable is a location in a GAP program that
points to a value. Thus for each formal argument and for each formal local such a location is allocated.

Next the arguments arg-exprs are evaluated, and the values are assigned to the newly created
variables corresponding to the formal arguments. Of course the first value is assigned to the new
variable corresponding to the first formal argument, the second value is assigned to the new variable
corresponding to the second formal argument, and so on. However, GAP does not make any guarantee
about the order in which the arguments are evaluated. They might be evaluated left to right, right to left,
or in any other order, but each argument is evaluated once. An exception again occurs if the last formal
argument has the name arg. In this case the values of all the actual arguments not assigned to the other
formal parameters are stored in a list and this list is assigned to the new variable corresponding to the
formal argument arg.

The new variables corresponding to the formal locals are initially not bound to any value. So
trying to evaluate those variables before something has been assigned to them will signal an error.

Now the body of the function, which is a statement, is executed. If the identifier of one of the
formal arguments or formal locals appears in the body of the function it refers to the new variable that
was allocated for this formal argument or formal local, and evaluates to the value of this variable.

If during the execution of the body of the function a return statement with an expression (see
4.24) is executed, execution of the body is terminated and the value of the function call is the value
of the expression of the return. If during the execution of the body a return statement without an
expression is executed, execution of the body is terminated and the function call does not produce a
value, in which case we call this call a procedure call (see 4.16). If the execution of the body completes
without execution of a return statement, the function call again produces no value, and again we talk
about a procedure call.

Example

gap> Fibonacci(11);
89

The above example shows a call to the function Fibonacci (16.3.1) with actual argument 11, the
following one shows a call to the operation RightCosets (39.7.2) where the second actual argument

is another function call.
Example
gap> RightCosets(G, Intersection(U, V));;

4.11.2 Function Call With Options

function-var (arg-expr[, arg-expr, ...]1[: [option-expr [,option-expr,
11D

As well as passing arguments to a function, providing the mathematical input to its calculation,
it is sometimes useful to supply “hints” suggesting to GAP how the desired result may be computed
more quickly, or specifying a level of tolerance for random errors in a Monte Carlo algorithm.

Such hints may be supplied to a function-call and to all subsidiary functions called from that call
using the options mechanism. Options are separated from the actual arguments by a colon : and have
much the same syntax as the components of a record expression. The one exception to this is that a
component name may appear without a value, in which case the value true is silently inserted.

GAP - Reference Manual 57

The following example shows a call to Size (30.4.6) passing the options hard (with the value
true) and tcselection (with the string "external" as value).

Example
gap> Size(fpgrp : hard, tcselection := "external");

Options supplied with function calls in this way are passed down using the global options stack
described in chapter 8, so that the call above is exactly equivalent to
Example
gap> PushOptions(rec(hard := true, tcselection := "external"));
gap> Size(fpgrp);
gap> PopOptions();

Note that any option may be passed with any function, whether or not it has any actual meaning
for that function, or any function called by it. The system provides no safeguard against misspelled
option names.

4.12 Comparisons

left-expr = right-expr

left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal and
to false otherwise. Likewise <> tests for inequality of its two operands. For each type of objects
the definition of equality is given in the respective chapter. Objects in different families (see 13.1) are
never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr

left-expr > right-expr

left-expr <= right-expr

left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its two
operands. For each kind of objects the definition of the ordering is given in the respective chapter.

Note that < implements a total ordering of objects (which can be used for example to sort a list
of elements). Therefore in general < will not be compatible with any inclusion relation (which can be
tested using IsSubset (30.5.1)). (For example, it is possible to compare permutation groups with <
in a total ordering of all permutation groups, but this ordering is not compatible with the relation of
being a subgroup.)

Only for the following kinds of objects, an ordering via < of objects in different families (see 13.1)
is supported. Rationals (see IsRat (17.2.1)) are smallest, next are cyclotomics (see IsCyclotomic
(18.1.3)), followed by finite field elements (see ISFFE (59.1.1)); finite field elements in different
characteristics are compared via their characteristics, next are permutations (see IsPerm (42.1.1)),
followed by the boolean values true, false, and fail (see IsBool (20.1.1)), characters (such as
{}a{’}’, see IsChar (27.1.1)), and lists (see IsList (21.1.1)) are largest; note that two lists can be
compared with < if and only if their elements are again objects that can be compared with <.

For other objects, GAP does not provide an ordering via <. The reason for this is that a total
ordering of all GAP objects would be hard to maintain when new kinds of objects are introduced, and
such a total ordering is hardly used in its full generality.

GAP - Reference Manual 58

However, for objects in the filters listed above, the ordering via < has turned out to be useful. For
example, one can form sorted lists containing integers and nested lists of integers, and then search in
them using PositionSorted (see 21.16).

Of course it would in principle be possible to define an ordering via < also for certain other objects,
by installing appropriate methods for the operation \<. But this may lead to problems at least as soon
as one loads GAP code in which the same is done, under the assumption that one is completely free to
define an ordering via < for other objects than the ones for which the “official” GAP provides already
an ordering via <.

Comparison operators, including the operator in (see 21.8), are not associative, Hence it is not
allowed towritea = b <> ¢ = d,youmustuse (a = b) <> (¢ = d) instead. The comparison
operators have higher precedence than the logical operators (see 20.4), but lower precedence than the
arithmetic operators (see 4.13). Thus, for instance, a * b = ¢ and d is interpreted as ((a * b)
= ¢) and d).

The following example shows a comparison where the left operand is an expression.

Example

gap> 2 * 2 + 9 = Fibonacci(7);
true

For the underlying operations of the operators introduced above, see 31.11.

4.13 Arithmetic Operators

+ right-expr

- right-expr

left-expr + right-expr

left-expr - right-expr

left-expr * right-expr

left-expr / right-expr

left-expr mod right-expr

left-expr ~ right-expr

The arithmetic operators are +, -, *, /, mod, and ~. The meanings (semantics) of those operators
generally depend on the types of the operands involved, and they are defined in the various chapters
describing the types. However basically the meanings are as follows.

a + b denotes the addition of additive elements a and b.

a - b denotes the addition of a and the additive inverse of b.

a * b denotes the multiplication of multiplicative elements a and b.

a / b denotes the multiplication of a with the multiplicative inverse of b.

a mod b, for integer or rational left operand a and for non-zero integer right operand b, is defined
as follows. If a and b are both integers, a mod b is the integer r in the integer range 0 .. |b]
- 1 satisfying a = r + bq, for some integer g (where the operations occurring have their usual
meaning over the integers, of course).

If a is a rational number and b is a non-zero integer, and a = m / n where m and n are coprime
integers with n positive, then a mod b is the integer r in the integer range 0 .. |b| - 1 such that
m is congruent to rn modulo b, and r is called the “modular remainder” of a modulo b. Also, 1 /
n mod b is called the “modular inverse” of n modulo b. (A pair of integers is said to be coprime (or
relatively prime) if their greatest common divisor is 1.)

GAP - Reference Manual 59

With the above definition, 4 / 6 mod 32equals2 / 3 mod 32 and hence exists (and is equal to
22), despite the fact that 6 has no inverse modulo 32.

Note: For rational a, a mod b could have been defined to be the non-negative rational c less than
|b| such that a - ¢ is a multiple of b. However this definition is seldom useful and not the one
chosen for GAP.

+ and - can also be used as unary operations. The unary + is ignored. The unary - returns the
additive inverse of its operand; over the integers it is equivalent to multiplication by -1.

~ denotes powering of a multiplicative element if the right operand is an integer, and is also used
to denote the action of a group element on a point of a set if the right operand is a group element.

The precedence of those operators is as follows. The powering operator ~ has the highest prece-
dence, followed by the unary operators + and -, which are followed by the multiplicative operators
*, /, and mod, and the additive binary operators + and - have the lowest precedence. That means
that the expression -2 ~ -2 * 3 + 1 is interpreted as (-(2 ~ (-2)) * 3) + 1. If in doubt use
parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows. ~ is not associative, i.e., it is invalid to
write 2~3~4, use parentheses to clarify whether you mean (2~3)~4 or 2~ (3~4). The unary operators
+ and - are right associative, because they are written to the left of their operands. *, /, mod, +, and
- are all left associative, i.e., 1-2-3 is interpreted as (1-2) -3 not as 1-(2-3). Again, if in doubt use
parentheses to clarify your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 4.12 and 30.6)
and the logical operators (see 20.4). Thus, for example,a * b = ¢ and d isinterpreted, ((a * b)
= ¢) and d.

Example

gap> 2 * 2 + 9; # a very simple arithmetic expression
13

For other arithmetic operations, and for the underlying operations of the operators introduced
above, see 31.12.

4.14 Statements

Assignments (see 4.15), Procedure calls (see 4.16), if statements (see 4.17), while (see 4.18), repeat
(see 4.19) and for loops (see 4.20), and the return statement (see 4.24) are called statements. They
can be entered interactively or be part of a function definition. Every statement must be terminated by
a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect. For
example an assignment has the effect of assigning a value to a variable, a for loop has the effect of
executing a statement sequence for all elements in a list and so on. We will talk about evaluation of
expressions but about execution of statements to emphasize this difference.

Using expressions as statements is treated as syntax error.

Example
gap> i :=7;;
gap> if i <> O then k = 16/1i; fi;
Syntax error: := expected

if i <> 0 then k = 16/i; fi;

gap>

GAP - Reference Manual 60

As you can see from the example this warning does in particular address those users who are used
to languages where = instead of := denotes assignment.

Empty statements are permitted and have no effect.

A sequence of one or more statements is a statement sequence, and may occur everywhere instead
of a single statement. Each construct is terminated by a keyword. The simplest statement sequence
is a single semicolon, which can be used as an empty statement sequence. In fact an empty statement
sequence as in for i in [1 .. 2] do od is also permitted and is silently translated into the
sequence containing just a semicolon.

4.15 Assignments

var := expr;
The assignment has the effect of assigning the value of the expressions expr to the variable var.
The variable var may be an ordinary variable (see 4.8), a list element selection
list-var [int-expr] (see 21.4) or a record component selection record-var . ident (see 29.3).
Since a list element or a record component may itself be a list or a record the left hand side of an
assignment may be arbitrarily complex.
Note that variables do not have a type. Thus any value may be assigned to any variable. For
example a variable with an integer value may be assigned a permutation or a list or anything else.

Example
gap> data:= rec(numbers:= [1, 2, 3]);
rec(numbers := [1, 2, 3])

gap> data.string:= "string";; data;

rec(numbers := [1, 2, 3], string := "string")
gap> data.numbers[2]:= 4;; data;
rec(numbers := [1, 4, 3], string := "string")

If the expression expr is a function call then this function must return a value. If the function
does not return a value an error is signalled and you enter a break loop (see 6.4). As usual you can
leave the break loop with quit;. If you enter return return-expr; the value of the expression
return-expr is assigned to the variable, and execution continues after the assignment.

Example
gap> f1:= function(x) Print("value: ", x, "\n"); end;;
gap> f2:= function(x) return f1(x); end;;
gap> f2(4);
value: 4

Function Calls: <func> must return a value at
return £f1(x);
called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can supply one by ’return <value>;’ to continue
brk> return "hello";
"hello"

In the above example, the function £2 calls £1 with argument 4, and since £1 does not return a
value (but only prints a line “value: ...”), the return statement of £2 cannot be executed. The

GAP - Reference Manual 61

error message says that it is possible to return an appropriate value, and the returned string "hello"
is used by £2 instead of the missing return value of £1.

4.16 Procedure Calls

procedure-var ([arg-expr [,arg-expr, ...11);

The procedure call has the effect of calling the procedure procedure-var. A procedure call is
done exactly like a function call (see 4.11). The distinction between functions and procedures is only
for the sake of the discussion, GAP does not distinguish between them. So we state the following
conventions.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., "Length", "Concatenation" and
"Order".

A procedure is a function that does not return a value but produces some effect. Procedures are
called only for this effect. As a convention the name of a procedure is a verb, denoting what the
procedure does, e.g., "Print", "Append" and "Sort".

Example
gap> Read("myfile.g"); # a call to the procedure Read
gap> 1 := [1, 2 1;;

gap> Append(1, [3,4,5]); # a call to the procedure Append

There are a few exceptions of GAP functions that do both return a value and produce some effect.
An example is Sortex (21.18.3) which sorts a list and returns the corresponding permutation of the
entries.

417 It

if bool-exprl then statementsl { elif bool-expr2 then statements2 }[else
statements3] fi;

The if statement allows one to execute statements depending on the value of some boolean ex-
pression. The execution is done as follows.

First the expression bool-expril following the if is evaluated. If it evaluates to true the state-
ment sequence statements1 after the first then is executed, and the execution of the if statement is
complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to true the
corresponding statement sequence statements2 is executed and execution of the if statement is
complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else
part, which is optional, its statement sequence statements3 is executed and the execution of the if
statement is complete. If there is no else part the if statement is complete without executing any
statement sequence.

Since the if statement is terminated by the £fi keyword there is no question where an else part
belongs, i.e., GAP has no “dangling else”. In

if exprl then if expr2 then statsl else stats2 fi; fi;

GAP - Reference Manual 62

the else part belongs to the second if statement, whereas in

if exprl then if expr2 then statsl fi; else stats2 fi;

the else part belongs to the first if statement.
Since an if statement is not an expression it is not possible to write

abs := if x > O then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a value
that could be assigned to abs.

If one of the expressions bool-exprl, bool-expr2 is evaluated and its value is neither true nor
false an error is signalled and a break loop (see 6.4) is entered. As usual you can leave the break loop
with quit;. If you enter return true;, execution of the if statement continues as if the expression
whose evaluation failed had evaluated to true. Likewise, if you enter return false;, execution of
the if statement continues as if the expression whose evaluation failed had evaluated to false.

Example
gap> i := 10;;
gap> if O < i then
> s :=1;
> elif i < O then
> s = -1;
> else
> s := 0;
> fi;
gap> s; # the sign of i
1

4.18 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr
evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates
and the statement immediately following the while loop is executed next. Otherwise if it evaluates to
true the statements are executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 4.19) is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.4)
is entered. As usual you can leave the break loop with quit ;. If you enter return false;, execution
continues with the next statement immediately following the while loop. If you enter return true;,
execution continues at statements, after which the next evaluation of bool-expr may cause another
erTor.

The following example shows a while loop that sums up the squares 12,22, ... until the sum
exceeds 200.

GAP - Reference Manual 63

Example

gap> i := 0;; s := 033

gap> while s <= 200 do

> i:=1i+1; s =8+ i~2;
> od;

gap> s;

204

A while loop may be left prematurely using break, see 4.21.

4.19 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr
evaluates to true.

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat
loop terminates and the statement immediately following the repeat loop is executed next. Otherwise
if it evaluates to false the whole process begins again with the execution of the statements.

The difference between the while loop (see 4.18) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see
6.4) is entered. As usual you can leave the break loop with quit;. If you enter return true;,
execution continues with the next statement immediately following the repeat loop. If you enter
return false;, execution continues at statements, after which the next evaluation of bool-expr
may cause another error.

The repeat loop in the following example has the same purpose as the while loop in the preced-
ing example, namely to sum up the squares 12,22, ... until the sum exceeds 200.

Example

gap> i := 0;; s := 033
gap> repeat

> i:=1i+1; s :=8 + i~2;
> until s > 200;

gap> s;

204

A repeat loop may be left prematurely using break, see 4.21.

4.20 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list
list-expr.

The statement sequence statements is first executed with simple-var bound to the first element
of the list 1ist-expr, then with simple-var bound to the second element of 1ist-expr and so on.
simple-var must be a simple variable, it must not be a list element selection 1ist-var [int-expr]
or a record component selection record-var . ident.

GAP - Reference Manual 64

The execution of the for loop over a list is exactly equivalent to the following while loop.

loop_list := list;

loop_index := 1;

while loop_index <= Length(loop_list) do
variable := loop_list[loop_index];
statements
loop_index := loop_index + 1;

od;

with the exception that “loop_list” and “loop_index” are different variables for each for loop, i.e.,
these variables of different for loops do not interfere with each other.

The list 1ist-expr is very often a range (see 21.22).

for variable in [from..to] do statements od;

corresponds to the more common

for variable from from to to do statements od;

in other programming languages.

Example
gap> s := 0;;

gap> for i in [1..100] do

> s :=s + i;

> od;

gap> s;

5050

Note in the following example how the modification of the /ist in the loop body causes the loop
body also to be executed for the new values.

Example

gap> 1 := [1, 2, 3, 4, 5, 6 1;;

gap> for i in 1 do

> Print(i, " ");

> if i mod 2 = 0 then Add(1, 3 * i / 2); fi;
> od; Print("\n");

12345636099

gap> 1;

[1, 2, 3, 4, 5, 6, 3, 6, 9, 9]

Note in the following example that the modification of the variable that holds the list has no
influence on the loop.

Example

gap> 1 := [1, 2, 3, 4, 5, 6 1;;
gap> for i in 1 do

> Print(i, " ");

> 1 :=[1;

> od; Print("\n");

123456

gap> 1;

[1]

GAP - Reference Manual 65

for variable in iterator do statements od;
It is also possible to have a for-loop run over an iterator (see 30.8). In this case the for-loop is
equivalent to

while not IsDonelterator(iterator) do
variable := NextIterator(iterator)
statements

od;

for variable in object do statements od;
Finally, if an object object which is not a list or an iterator appears in a for-loop, then GAP will
attempt to evaluate the function call Iterator(object). If this is successful then the loop is taken
to run over the iterator returned.
Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)
gap> count := 0;; sumord := 0;;
gap> for x in g do
> count := count + 1; sumord := sumord + Order(x); od;
gap> count;
120
gap> sumord;
471

The effect of

for variable in domain do

should thus normally be the same as

for variable in AsList(domain) do

but may use much less storage, as the iterator may be more compact than a list of all the elements.

See 30.8 for details about iterators.

A for loop may be left prematurely using break, see 4.21. This combines especially well with
a loop over an iterator, as a way of searching through a domain for an element with some useful
property.

4.21 Break

break;
The statement break; causes an immediate exit from the innermost loop enclosing it.

Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> for x in g do

> if Order(x) 3 then

> break;

> fi; od;

gap> x;

(1,5,2)(3,4,6)

GAP - Reference Manual 66

It is an error to use this statement other than inside a loop.

Example

gap> break;
Syntax error: ’break’ statement not enclosed in a loop

4.22 Continue

continue;

The statement continue; causes the rest of the current iteration of the innermost loop enclosing
it to be skipped.

Example
gap> g := Group((1,2,3),(1,2));
Group([(1,2,3), (1,2) 1)

gap> for x in g do

> if Order(x) = 3 then

> continue;

> fi; Print(x,"\n"); od;

O

(2,3)

(1,3)

(1,2)

It is an error to use this statement other than inside a loop.

Example
gap> continue;

Syntax error: ’continue’ statement not enclosed in a loop

4.23 Function

function([arg-ident {, arg-ident}])
[local loc-ident {, loc-ident} ;]
statements
end
A function is in fact a literal and not a statement. Such a function literal can be assigned to a
variable or to a list element or a record component. Later this function can be called as described in
4.11.
The following is an example of a function definition. It is a function to compute values of the
Fibonacci sequence (see Fibonacci (16.3.1)).

Example

gap> fib := function (n)
local f1, f2, £3, i;
f1 :=1; £2 := 1;
for i in [3..n] do
f3 = f1 + £2;
f1 := £2;
£f2 := £3;
od;

V V V V V V V

GAP - Reference Manual 67

> return f2;

> end;;

gap> List([1..10], fib);

(1,1, 2, 3,5, 8, 13, 21, 34, 55]

Because for each of the formal arguments arg-ident and for each of the formal locals
loc-ident a new variable is allocated when the function is called (see 4.11), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function that com-
putes values of the Fibonacci sequence.

Example
gap> fib := function (n)
if n < 3 then
return 1;
else
return fib(n-1) + fib(n-2);
fi;
end;;
ap> List([1..10], fib);
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 1]

—,0R V V V V V V

Note that the recursive version needs 2 * fib(n) -1 steps to compute £ib(n), while the iterative
version of £ib needs only n-2 steps. Both are not optimal however, the library function Fibonacci
(16.3.1) only needs about Log(n) steps.

As noted in Section 4.11, the case where a function’s last argument is followed by . . . is special.
It provides a way of defining a function with a variable number of arguments. The values of the actual
arguments are computed and the first ones are assigned to the new variables corresponding to the
formal arguments before the last argument, if any. The values of all the remaining actual arguments are
stored in a list and this list is assigned to the new variable corresponding to the final formal argument.
There are two typical scenarios for wanting such a possibility: having optional arguments and having
any number of arguments.

The following example shows one way that the function Position (21.16.1) might be encoded
and demonstrates the “optional argument” scenario.

Example
gap> position := function (list, obj, arg...)

local pos;

if 0 = Length(arg) then
pos := 0;

else
pos := arg[i];

fi;

repeat
pos := pos + 1;

if pos > Length(list) then
return fail;
fi;
until list[pos] = obj;
return pos;
end;
function(list, obj, arg...) ... end

V VVV VYV VYV VYV VYVVYV

GAP - Reference Manual 68

gap> position([1, 4, 2], 4);

2

gap> position([1, 4, 2], 3);
fail

gap> position([1, 4, 2], 4, 2);
fail

The following example demonstrates the “any number of arguments” scenario.

Example
gap> sum := function (1...)
> local total, x;
> total := 0;
> for x in 1 do
> total := total + x;
> od;
> return total;
> end;
function(1...) ... end
gap> sum(l, 2, 3);

6

gap> sum(1l, 2, 3, 4);
10

gap> sum();

0

The user should compare the above with the GAP function Sum (21.20.26) which, for example,
may take a list argument and optionally an initial element (which zero should the sum of an empty list
return?).

GAP will also special case a function with a single argument with the name arg as function with
a variable length list of arguments, as if the user had written arg. . ..

Note that if a function £ is defined as above then NumberArgumentsFunction(f) returns minus
the number of formal arguments (including the final argument) (see NumberArgumentsFunction
(5.1.2)).

Using the ... notation on a function £ with only a single named argument tells GAP that when
it encounters f that it should form a list out of the arguments of f. What if one wishes to do the
“opposite”: tell GAP that a list should be “unwrapped” and passed as several arguments to a function.
The function CallFuncList (5.2.1) is provided for this purpose.

Also see Chapter 5.

{ arg-list } -> expr

This is a shorthand for

function (arg-list) return expr; end.

arg-list is a (possibly empty) argument list. Any arguments list which would be valid for a
normal GAP function is also valid here (including variadic arguments).

The following gives a couple of examples of a typical use of such a function

Example
gap> Sum(List([1..100], {x} -> x"2));
338350

gap> list := [3, 5, 2, 1, 3];;

gap> Sort(list, {x,y} -> x > y);

GAP - Reference Manual

gap> list;

[5, 3, 3, 2, 11

gap> £ := {x,y...} -> vy;;
gap> £(1,2,3,4);

[2, 3, 4]
gap> f := {} -> 2;
function() ... end

gap> Print(f);

function ()
return 2;

end

gap> £0;

2

69

The { and } may be omitted for functions with one argument:

Example
gap> Sum(List([1..100], {x} -> x"2));
338350

gap> Sum(List([1..100], x -> x72));
338350

When the definition of a function fun1 is evaluated inside another function fun2, GAP binds all
the identifiers inside the function fun1 that are identifiers of an argument or a local of fun2 to the
corresponding variable. This set of bindings is called the environment of the function funl. When
funl is called, its body is executed in this environment. The following implementation of a simple
stack uses this. Values can be pushed onto the stack and then later be popped off again. The interesting
thing here is that the functions push and pop in the record returned by Stack access the local variable
stack of Stack. When Stack is called, a new variable for the identifier stack is created. When
the function definitions of push and pop are then evaluated (as part of the return statement) each
reference to stack is bound to this new variable. Note also that the two stacks A and B do not interfere,

because each call of Stack creates a new variable for stack.
Example

gap> Stack := function ()
local stack;

stack := [];
return rec(
push := function (value)
Add(stack, value);
end,

pop := function ()
local value;
value := stack[Length(stack)];
Unbind(stack[Length(stack)]);
return value;
end
)3
end;;
gap> A := StackQ;;
gap> B := Stack();;
gap> A.push(1); A.push(2); A.push(3);
gap> B.push(4); B.push(5); B.push(6);

V VVV VV VYV VYV VYVVYV

GAP - Reference Manual 70

gap> A.pop(); A.pop(); A.pop(O);
3
2
1
gap> B.pop(); B.pop(); B.pop();
6
5
4

This feature should be used rarely, since its implementation in GAP is not very efficient.

4.24 Return (With or without Value)

return;

In this form return terminates the call of the innermost function that is currently executing, and
control returns to the calling function. An error is signalled if no function is currently executing. No
value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing, and
returns the value of the expression expr. Control returns to the calling function. An error is signalled
if no function is currently executing.

Both statements can also be used in break loops (see 6.4). return; has the effect that the com-
putation continues where it was interrupted by an error or the user hitting CTRL-C. return expr;
can be used to continue execution after an error. What happens with the value expr depends on the
particular error.

For examples of return statements, see the functions £ib and Stack in Section 4.23.

Chapter 5

Functions

The section 4.23 describes how to define a function. In this chapter we describe functions that give in-
formation about functions, and various utility functions used either when defining functions or calling
functions.

5.1 Information about a function

5.1.1 NameFunction

> NameFunction(func) (operation)

returns the name of a function. For operations, this is the name used in their declaration. For
functions, this is the variable name they were first assigned to. (For some internal functions, this
might be a name different from the name that is documented.) If no such name exists, the string
"unknown" is returned.
Example

gap> NameFunction(SylowSubgroup) ;
"SylowSubgroup"

gap> Blubberflutsch:=x->x;;

gap> NameFunction(Blubberflutsch);
"Blubberflutsch"

gap> a:=Blubberflutsch;;

gap> NameFunction(a);
"Blubberflutsch"

gap> NameFunction(x->x);
"unknown"

gap> NameFunction(NameFunction) ;
"NameFunction"

5.1.2 NumberArgumentsFunction
> NumberArgumentsFunction(func) (operation)
returns the number of arguments the function func accepts. -1 is returned for all operations. For

functions that use . . . or arg to take a variable number of arguments, the number returned is -1 times
the total number of parameters. For attributes, 1 is returned.

71

GAP - Reference Manual 72

Example
gap> NumberArgumentsFunction(function(a,b,c,d,e,f,g,h,i,j,k)return 1;end);
11
gap> NumberArgumentsFunction(Size);
1
gap> NumberArgumentsFunction(IsCollsCollsElms) ;
3
gap> NumberArgumentsFunction(Sum) ;
-1
gap> NumberArgumentsFunction(function(a, x...) return 1; end);
-2

5.1.3 NamesLocalVariablesFunction

> NamesLocalVariablesFunction(func) (operation)

returns a mutable list of strings; the first entries are the names of the arguments of the function
func, in the same order as they were entered in the definition of func, and the remaining ones are the
local variables as given in the local statement in func. (The number of arguments can be computed
with NumberArgumentsFunction (5.1.2).)
Example
gap> NamesLocalVariablesFunction(function(a, b) local c; return 1; end);
[Ilall’ llbll, "C"]
gap> NamesLocalVariablesFunction(function(arg) local a; return 1; end);
[Ilargll s llall]
gap> NamesLocalVariablesFunction(Size);
fail

5.1.4 FilenameFunc
> FilenameFunc(func) (function)
For a function func, FilenameFunc returns either fail or the absolute path of the file from which

func has been read. The return value fail occurs if func is a compiled function or an operation. For
functions that have been entered interactively, the string "*stdin*" is returned, see Section 9.5.

Example
gap> FilenameFunc(LEN_LIST); # a kernel function
fail
gap> FilenameFunc(Size); # an operation
fail
gap> FilenameFunc(x -> x72); # an interactively entered function
"*stdin*"
gap> meth:= ApplicableMethod(Size, [Group(()) 1);;
gap> FilenameFunc(meth);
"... some path .../grpperm.gi"

5.1.5 StartlineFunc

> StartlineFunc (func) (function)
> EndlineFunc(func) (function)

GAP - Reference Manual 73

Let func be a function. If FilenameFunc (5.1.4) returns fail for func then also
StartlineFunc returns fail. If FilenameFunc (5.1.4) returns a filename for func then
StartlineFunc returns the line number in this file where the definition of func starts.

EndlineFunc behaves similarly and returns the line number in this file where the definition of
func ends.

Example
gap> meth:= ApplicableMethod(Size, [Group(O) 1);;
gap> FilenameFunc(meth);
"... some path ... gap4r5/lib/grpperm.gi"
gap> StartlineFunc(meth);
487
gap> EndlineFunc(meth);
487

5.1.6 LocationFunc
> LocationFunc (func) (function)
Let func be a function. Returns a string describing the location of func, or an empty string if

the information cannot be found. This uses the information provided by FilenameFunc (5.1.4) and
StartlineFunc (5.1.5)

Example

gap> LocationFunc(Intersection);

"... some path ... gap/lib/coll.gi:2467"

String is an attribute, so no information is stored
gap> LocationFunc(String);

5.1.7 PageSource

> PageSource(func/[, nr]) (function)

This shows the file containing the source code of the function or method func in a pager (see
Pager (2.4.1)). The display starts at a line shortly before the code of func.

For operations func the function shows the source code of the declaration of func. Operations
can have several declarations, use the optional second argument to specify which one should be shown
(in the order the declarations were read); the default is to show the first.

For kernel functions the function tries to show the C source code.

If GAP cannot find a file containing the source code this will be indicated.

Usage examples:
met := ApplicableMethod(\~, [(1,2),2743527]); PageSource(met);

PageSource (Combinations) ;

PageSource (SORT_LIST) ;

PageSource(Size, 2);

ct := CharacterTable(Group((1,2,3)));

met := ApplicableMethod(Size, [ct]); PageSource(met);

GAP - Reference Manual 74

5.2 Calling a function with a list argument that is interpreted as several
arguments

5.2.1 CallFuncList

> CallFuncList(func, args) (operation)
> CallFuncListWrap(func, args) (operation)

returns the result, when calling function func with the arguments given in the list args, i.e. args
is “unwrapped” so that args appears as several arguments to func.
Example

gap> CallFuncList(\+, [6, 71);
13

gap> #is equivalent to:

gap> \+(6, 7);

13

A more useful application of CallFuncList is for a function g that is called in the body of a
function f with (a sublist of) the arguments of £, where £ has been defined with a single formal
argument arg (see 4.23), as in the following code fragment.

Example

f := function (arg)
CallFunclist(g, arg);

end;

In the body of £ the several arguments passed to £ become a list arg. If g were called instead via
g(arg) then g would see a single list argument, so that g would, in general, have to “unwrap” the
passed list. The following (not particularly useful) example demonstrates both described possibilities

for the call to g.

Example
gap> PrintNumberFromDigits := function (arg)
> CallFuncList(Print, arg);
> Print("\n");
> end;
function(arg...) ... end
gap> PrintNumberFromDigits(1, 9, 7, 3, 2);
19732
gap> PrintDigits := function (arg)
> Print(arg);
> Print("\n");
> end;
function(arg...) ... end
gap> PrintDigits(1, 9, 7, 3, 2);
[1,9,7,3,2]

CallFuncListWrap differs only in that the result is a list. This returned list is empty if the called
function returned no value, else it contains the returned value as it’s single member. This allows
wrapping functions which may, or may not return a value.

GAP - Reference Manual 75

Example
gap> CallFuncListWrap(x -> x, [1]);
[1]
gap> CallFuncListWrap(function(x) end, [1]);
]

5.3 Wrapping a function, so the values produced are cached

5.3.1 MemoizePosIntFunction

> MemoizePosIntFunction(function[, options]) (function)

MemoizePosIntFunction returns a function which behaves the same as function, except it
caches the results; if the new function is called with the same input, then any call after the first will
return the cached value, instead of recomputing it. The cache is flushed by calling FlushCaches
(79.18.18).

The returned function will only accept positive integers.

This function does not promise to never call function more than once for any input — values may
be removed if the cache gets too large, or GAP chooses to flush all caches, or if multiple threads try to
calculate the same value simultaneously.

The optional second argument is a record which provides a number of configuration options. The
following options are supported.

defaults (default an empty list)
Used to initalise the cache, both initially and after each flush.

flush (default true)
If this is true, the cache is emptied whenever FlushCaches (79.18.18) is called.

errorHandler (defaults to Error (6.6.1))
A function to be called when an input which is not a positive integer is passed to the cache. If
this function returns a value, that value is returned by the cache.

Example

gap> f := MemoizePosIntFunction(

> function(i) Print("Check: ",i,"\n"); return i*i; end,
> rec(defaults := [,,50], errorHandler := x -> "Bad"));;
gap> £(2);

Check: 2

4

gap> £(2);

4

gap> f(3);

50

gap> £(-3);

"Bad"

gap> FlushCaches();

gap> £(2);

Check: 2

4

GAP - Reference Manual 76

gap> £(3);
50

5.4 Functions that do nothing

The following functions return fixed results (or just their own argument). They can be useful in places
when the syntax requires a function, but actually no functionality is required. So ReturnTrue (5.4.1)
is often used as family predicate in InstallMethod (78.2.1).

5.4.1 ReturnTrue

> ReturnTrue(...) (function)

This function takes any number of arguments, and always returns true.

Example

gap> f:=ReturnTrue;
function(arg...) ... end
gap> £();

true

gap> f(42);

true

5.4.2 ReturnFalse

> ReturnFalse(...) (function)

This function takes any number of arguments, and always returns false.

Example

gap> f:=ReturnFalse;
function(arg...) ... end
gap> £();

false

gap> f("any_string");
false

5.4.3 ReturnFail

> ReturnFail(...) (function)

This function takes any number of arguments, and always returns fail.

Example
gap> oops:=ReturnFail;
function(arg...) ... end
gap> oops();
fail

gap> oops(-42);
fail

GAP - Reference Manual 77

5.4.4 ReturnNothing

> ReturnNothing(...) (function)

This function takes any number of arguments, and always returns nothing.

Example
gap> n:=ReturnNothing;

function(object...) ... end

gap> nQ);

gap> n(-42);

5.4.5 ReturnFirst

> ReturnFirst(...) (function)

This function takes one or more arguments, and always returns the first argument. IdFunc (5.4.6)
behaves similarly, but only accepts a single argument.

Example
gap> f:=ReturnFirst;
function(object...) ... end
gap> £(1);
1
gap> £(2,3,4);
2
gap> £QO;
Error, RETURN_FIRST requires one or more arguments

5.4.6 IdFunc

> IdFunc (Obj) (function)

returns obj. ReturnFirst (5.4.5) is similar, but accepts one or more arguments, returning only
the first.
Example

gap> id:=IdFunc;

function(object) ... end

gap> id(42);

42

gap> f:=id(SymmetricGroup(3));

SymC [1 ..31)

gap> s:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping(Sym([1 .. 31))

gap> f=s;

false

5.5 Function Types

Functions are GAP objects and thus have categories and a family.

GAP - Reference Manual 78

5.5.1 IsFunction

> IsFunction(obj) (Category)

is the category of functions.

Example
gap> IsFunction(x->x"2);

true

gap> IsFunction(Factorial);

true

gap> f:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping(Sym([1 .. 31))

gap> IsFunction(f);

false

5.5.2 IsOperation

> IsOperation(obj) (Category)

is the category of operations. Every operation is a function, but not vice versa.

Example

gap> MinimalPolynomial;

<Operation "MinimalPolynomial">
gap> IsOperation(MinimalPolynomial);
true

gap> IsFunction(MinimalPolynomial);
true

gap> Factorial;

function(n) ... end

gap> IsOperation(Factorial);

false

5.5.3 FunctionsFamily

> FunctionsFamily (family)

is the family of all functions.

5.6 Naming Conventions

The way functions are named in GAP might help to memorize or even guess names of library func-
tions.

If a variable name consists of several words then the first letter of each word is capitalized.

If the first part of the name of a function is a verb then the function may moditfy its argument(s) but
does not return anything, for example Append (21.4.5) appends the list given as second argument to the
list given as first argument. Otherwise the function returns an object without changing the arguments,
for example Concatenation (21.20.1) returns the concatenation of the lists given as arguments.

GAP - Reference Manual 79

If the name of a function contains the word “0f” then the return value is thought of as informa-
tion deduced from the arguments. Usually such functions are attributes (see 13.5). Examples are
Generators0fGroup (39.2.4), which returns a list of generators for the group entered as argument,
or DiagonalOfMat (24.12.1).

For the setter and tester functions of an attribute Attr the names SetAttr resp. HasAttr are
available (see 13.5).

If the name of a function contains the word “By” then the return value is thought of as
built in a certain way from the parts given as arguments. For example, creating a group
as a factor group of a given group by a normal subgroup can be done by taking the image
of NaturalHomomorphismByNormalSubgroup (39.18.1). Other examples of “By” functions are
GroupHomomorphismByImages (40.1.1) and LaurentPolynomialByCoefficients (66.13.1).

Often such functions construct an algebraic structure given by its generators (for exam-
ple, RingByGenerators (56.1.4)). In some cases, “By” may be replaced by “With” (like e.g.
GroupWithGenerators (39.2.3)) or even both versions of the name may be used. The difference
between StructByGenerators and StructWithGenerators is that the latter guarantees that the
GeneratorsOfStruct value of the result is equal to the given set of generators (see 31.3).

If the name of a function has the form “AsSomething” then the return value is an object (usually
a collection which has the same family of elements), which may, for example:

* know more about its own structure (and so support more operations) than its input (e.g. if the
elements of the collection form a group, then this group can be constructed using AsGroup
(39.2.5));

* discard its additional structure (e.g. AsList (30.3.8) applied to a group will return a list of its
elements);

* contain all elements of the original object without duplicates (like e.g. AsSet (30.3.10) does if
its argument is a list of elements from the same family);

* remain unchanged (like e.g. AsSemigroup (51.1.6) does if its argument is a group).

If Something and the argument of AsSomething are domains, some further rules apply as explained
in Tutorial: Changing the Structure.

If the name of a function fun1 ends with “NC” then there is another function fun2 with the same
name except that the NC is missing. NC stands for “no check”. When fun2 is called then it checks
whether its arguments are valid, and if so then it calls fun1. The functions SubgroupNC (39.3.1) and
Subgroup (39.3.1) are a typical example.

The idea is that the possibly time consuming check of the arguments can be omitted if one is sure
that they are unnecessary. For example, if an algorithm produces generators of the derived subgroup
of a group then it is guaranteed that they lie in the original group; Subgroup (39.3.1) would check
this, and SubgroupNC (39.3.1) omits the check.

Needless to say, all these rules are not followed slavishly, for example there is one operation Zero
(31.10.3) instead of two operations ZeroOfElement and ZeroOfAdditiveGroup.

Chapter 6

Main Loop and Break Loop

This chapter is a first of a series of chapters that describe the interactive environment in which you use

GAP.

6.1 Main Loop

The normal interaction with GAP happens in the so-called read-eval-print loop. This means that you
type an input, GAP first reads it, evaluates it, and then shows the result. Note that the term print
may be confusing since there is a GAP function called Print (6.3.4) (see 6.3) which is in fact not
used in the read-eval-print loop, but traditions are hard to break. In the following, whenever we want
to express that GAP places some characters on the standard output, we will say that GAP shows
something.

The exact sequence in the read-eval-print loop is as follows.

To signal that it is ready to accept your input, GAP shows the prompt gap>. When you see this,
you know that GAP is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter RETURN (i.e.,
strike the RETURN key) before GAP starts to read and evaluate your input. (The RETURN key may
actually be marked with the word ENTER and a returning arrow on your terminal.) Because GAP
does not do anything until you enter RETURN, you can edit your input to fix typos and only when
everything is correct enter RETURN and have GAP take a look at it (see 6.8). It is also possible to
enter several statements as input on a single line. Of course each statement must be terminated by a
semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have entered
the beginning of a statement, but the statement is not yet complete, and you enter RETURN, GAP
will show the partial prompt >. When you see this, you know that GAP is waiting for the rest of the
statement. This happens also when you forget the semicolon ; that terminates every GAP statement.
Note that when RETURN has been entered and the current statement is not yet complete, GAP will
already evaluate those parts of the input that are complete, for example function calls that appear as
arguments in another function call which needs several input lines. So it may happen that one has to
wait some time for the partial prompt.

When you enter RETURN, GAP first checks your input to see if it is syntactically correct (see
Chapter 4 for the definition of syntactically correct). If it is not, GAP prints an error message of the
following form

80

GAP - Reference Manual 81

Example

gap> 1 * ;
Syntax error: Expression expected
1 *x

The first line tells you what is wrong about the input, in this case the * operator takes two ex-
pressions as operands, so obviously the right one is missing. If the input came from a file (see Read
(9.7.1)), this line will also contain the filename and the line number. The second line is a copy of the
input. And the third line contains a caret pointing to the place in the previous line where GAP realized
that something is wrong. This need not be the exact place where the error is, but it is usually quite
close.

Sometimes, you will also see a partial prompt after you have entered an input that is syntactically
incorrect. This is because GAP is so confused by your input, that it thinks that there is still something
to follow. In this case you should enter ; RETURN repeatedly, ignoring further error messages, until
you see the full prompt again. When you see the full prompt, you know that GAP forgave you and is
now ready to accept your next —hopefully correct— input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required
computations (see Chapter 4 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course, you
can type ahead, i.e., already start entering new input, but it will not be accepted by GAP until GAP
has completed the ongoing computation.

When GAP is ready it will usually show the result of the computation, i.e., the value computed.
Note that not all statements produce a value, for example, if you enter a for loop, nothing will be
printed, because the for loop does not produce a value that could be shown.

Also sometimes you do not want to see the result. For example if you have computed a value and
now want to assign the result to a variable, you probably do not want to see the value again. You can
terminate statements by two semicolons to suppress showing the result.

If you have entered several statements on a single line GAP will first read, evaluate, and show the
first one, then read, evaluate, and show the second one, and so on. This means that the second statement
will not even be checked for syntactical correctness until GAP has completed the first computation.

After the result has been shown GAP will display another prompt, and wait for your next input.
And the whole process starts all over again. Note that if you have entered several statements on a
single line, a new prompt will only be printed after GAP has read, evaluated, and shown the last
statement.

In each statement that you enter, the result of the previous statement that produced a value is
available in the variable 1ast. The next to previous result is available in 1ast2 and the result produced

before that is available in 1last3.
Example

gap> 1;2;3;

1

2

3

gap> last3 + last2 * last;
7

Also in each statement the time spent by the last statement, whether it produced a value or not,
is available in the variable time (7.6.4). This is an integer that holds the number of milliseconds.

GAP - Reference Manual 82

Similarly the amount of memory allocated during that statement (in bytes) is stored in the variable
memory_allocated (7.7.2).

6.2 Special Rules for Input Lines

The input for some GAP objects may not fit on one line, in particular big integers, long strings or
long identifiers. In these cases you can still type or paste them in long single lines. For nicer display
you can also specify the input on several lines. This is achieved by ending a line by a backslash or
by a backslash and a carriage return character, then continue the input on the beginning of the next
line. When reading this GAP will ignore such continuation backslashes, carriage return characters
and newline characters. GAP also prints long strings and integers this way.

Example

gap> n := 1234\

> 567890;

1234567890

gap> "This is a very long string that does not fit on a line \

> and is therefore continued on the next line.";

"This is a very long string that does not fit on a line and is therefo)\
re continued on the next line."

gap> bla\

> bla := 5;; blabla;

5

There is a special rule about GAP prompts in input lines: In line editing mode (usual user input
and GAP started without -n) in lines starting with whitespace following gap> , > or brk> this
beginning part is removed. This rule is very convenient because it allows to cut and paste input from
other GAP sessions or manual examples easily into your current session.

6.3 View and Print

GARP has three different operations to display or print objects: Display (6.3.6), ViewObj (6.3.5) and
Print0Obj (6.3.5), and these three have different purposes as follows. The first, Display (6.3.6),
should print the object to the standard output in a human-readable relatively complete and verbose
form. The second, ViewObj (6.3.5), should print the object to the standard output in a short and concise
form, it is used in the main read-eval-print loop to display the resulting object of a computation. The
third, Print0bj (6.3.5), should print the object to the standard output in a complete form which is
GAP-readable if at all possible, such that reading the output into GAP produces an object which is
equal to the original one.

All three operations have corresponding operations which do not print anything to standard out-
put but return the output as a string. These are DisplayString (27.7.1), ViewString (27.7.3) and
PrintString (27.7.5) (corresponding to PrintQ0bj (6.3.5)). Additionally, there is String (27.7.6)
which is very similar to PrintString (27.7.5) but does not insert control characters for line breaks.

For implementation convenience it is allowed that some of these operations have methods which
delegate to some other of these operations. However, the rules for this are that a method may only
delegate to another operation which appears further down in the following table:

GAP - Reference Manual 83

Display (6.3.6)
ViewObj (6.3.5)
Print0bj (6.3.5)
DisplayString (27.7.1)
ViewString (27.7.3)
PrintString (27.7.5)
String (27.7.6)

This is to avoid circular delegations.

Note in particular that none of the methods of the string producing operations may delegate to
the corresponding printing operations. Note also that the above mentioned purposes of the different
operations suggest that delegations between different operations will be sub-optimal in most scenarios.

6.3.1 Default delegations in the library

The library contains the following low ranked default methods:

* A method for DisplayString (27.7.1) which returns the constant value of the global variable
DEFAULTDISPLAYSTRING (27.7.2).

* A method for ViewString (27.7.3) which returns the constant value of the global variable
DEFAULTVIEWSTRING (27.7.4).

* A method for Display (6.3.6) which first calls DisplayString (27.7.1) and prints the result, if
it is a different object than DEFAULTDISPLAYSTRING (27.7.2). Otherwise the method delegates
to Print0bj (6.3.5).

* A method for ViewObj (6.3.5) which first calls ViewString (27.7.3) and prints the result, if
it is a different object than DEFAULTVIEWSTRING (27.7.4). Otherwise the method delegates to
Print0bj (6.3.5).

A method for Print0bj (6.3.5) which prints the result of PrintString (27.7.5).

* A method for PrintString (27.7.5) which returns the result of String (27.7.6)

6.3.2 Recommendations for the implementation

This subsection describes what methods for printing and viewing one should implement for new GAP
objects.

One should at the very least install a String (27.7.6) method to allow printing. Using the standard
delegations this enables a limited form of viewing, displaying and printing.

If, for larger objects, nicer line breaks are needed, one should install a separate PrintString
(27.7.5) method which puts in positions for good line breaks using the control characters \< (ASCII
1) and \> (ASCII 2).

If, for even larger objects, output performance and memory usage matters, one should install a
separate PrintObj (6.3.5) method.

One should usually install a ViewString (27.7.3) method, unless the above String (27.7.6)
method is good enough for ViewObj (6.3.5) purposes. Performance and memory should never matter
here, so it is usually unnecessary to install a separate ViewQObj (6.3.5) method.

GAP - Reference Manual 84

If the type of object calls for it one should install a DisplayString (27.7.1) method. This is the
case if a human readable verbose form is required.

If the performance and memory usage for Display (6.3.6) matters, one should install a separate
Display (6.3.6) method.

Note that if only a String (27.7.6) method is installed, then ViewObj (6.3.5) works and
ViewString (27.7.3) returns DEFAULTVIEWSTRING (27.7.4). Likewise, Display (6.3.6) works and
DisplayString (27.7.1) returns DEFAULTDISPLAYSTRING (27.7.2). If you want to avoid this then
install methods for these operations as well.

6.3.3 View

> VieW(Objl, obj2..) (function)

View shows the objects obj1, obj2... etc. in a short form on the standard output by calling the
ViewObj (6.3.5) operation on each of them. View is called in the read-eval-print loop, thus the output
looks exactly like the representation of the objects shown by the main loop. Note that no space or
newline is printed between the objects.

6.3.4 Print
> Print(objl, obj2, ...) (function)

Also Print shows the objects obj1, obj2... etc. on the standard output. The difference compared
to View (6.3.3) is in general that the shown form is not required to be short, and that in many cases the
form shown by Print is GAP readable.

Example
gap> z:= Z(2);

Z(2)-0

gap> v:= [z, z, z, z, z, 2z, z];

[Z(2)°0, 2(2)°0, Z(2)0, Z(2)"0, Z(2)~0, Z(2)"0, Z(2)"0 1]
gap> ConvertToVectorRep(v);; v;

<a GF2 vector of length 7>

gap> Print(v, "\n");

[Z(2)°0, Z(2)-0, Z(2)~0, Z(2)"0, Z(2)~0, Z(2)"0, Z(2)"0 1]

Another difference is that Print shows strings without the enclosing quotes, so Print can be used
to produce formatted text on the standard output (see also chapter 27). Some characters preceded by a
backslash, such as \n, are processed specially (see chapter 27.2). PrintTo (9.7.3) can be used to print
to a file.

Example
gap> for i in [1..5] do
> Print(i, " ", i~2, " ", i~3, "\n");
> od;
111
248
3927
4 16 64
5 25 125

gap> g:= SmallGroup(12,5);

GAP - Reference Manual 85

<pc group of size 12 with 3 generators>
gap> Print(g, "\n");

Group([f1, £2, £3])

gap> View(g); Print("\n");

<pc group of size 12 with 3 generators>

6.3.5 ViewObj

> ViewObj (Obj) (operation)
> Print Obj (Obj) (operation)

The functions View (6.3.3) and Print (6.3.4) actually call the operations ViewObj and Print0Obj,
respectively, for each argument. By installing special methods for these operations, it is possible to
achieve special printing behavior for certain objects (see chapter 78). The only exceptions are strings
(see Chapter 27), for which the default PrintObj and ViewObj methods as well as the function View
(6.3.3) print also the enclosing doublequotes, whereas Print (6.3.4) strips the doublequotes.

The default method for ViewOb]j is to call Print0bj. Soitis sufficient to have a Print0bj method
for an object in order to View (6.3.3) it. If one wants to supply a “short form” for View (6.3.3), one
can install additionally a method for ViewObj.

6.3.6 Display
> Display (obj) (operation)

Displays the object obj in a nice, formatted way which is easy to read (but might be difficult for
machines to understand). The actual format used for this depends on the type of obj. Each method
should print a newline character as last character.

Example
gap> Display([[1, 2, 31, [4, 5, 611 x Z(5));
241
3.2

One can assign a string to an object that Print (6.3.4) will use instead of the default used by
Print (6.3.4), via SetName (12.8.1). Also, Name (12.8.2) returns the string previously assigned to the
object for printing, via SetName (12.8.1). The following is an example in the context of domains.
Example

gap> g:= Group((1,2,3,4));
Group([(1,2,3,4) 1)

gap> SetName(g, "C4"); g;
C4

gap> Name(g);

I|C4||

When setting up examples, in particular if for beginning users, it sometimes can be convenient
to hide the structure behind a printing name. For many objects, such as groups, this can be done
using SetName (12.8.1). If the objects however is represented internally, for example permutations
representing group elements, this function is not applicable. Instead the function SetNameObject
(6.3.7) can be used to interface with the display routines on a lower level.

GAP - Reference Manual 86

6.3.7 SetNameObject

> SetNameObject(o, s) (function)

SetNameObject sets the string s as display name for object o in an interactive session. When
applying View (6.3.3) to object o, for example in the system’s main loop, GAP will print the string s.
Calling SetNameObject for the same object o with s set to fail deletes the special viewing setup.
since use of this features potentially slows down the whole print process, this function should be used
sparingly.

Example

gap> SetNameObject(3,"three");
gap> Filtered([1..10],IsPrimelnt);
[2, three, 5, 7 1]

gap> SetNameObject(3,fail);

gap> Filtered([1..10],IsPrimelnt);
[2, 3,5, 7]

6.4 Break Loops

When an error has occurred or when you interrupt GAP (usually by hitting CTRL-C) GAP enters a
break loop, that is in most respects like the main read eval print loop (see 6.1). That is, you can enter
statements, GAP reads them, evaluates them, and shows the result if any. However those evaluations
happen within the context in which the error occurred. So you can look at the arguments and local
variables of the functions that were active when the error happened and even change them. The prompt
is changed from gap> to brk> to indicate that you are in a break loop.

Example

gap> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue

If errors occur within a break loop GAP enters another break loop at a deeper level. This is
indicated by a number appended to brk:

Example

brk> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue
brk_02>

There are two ways to leave a break loop, see 6.4.1 and 6.4.2.

GAP - Reference Manual 87

6.4.1 (quit from a break loop

The first way to leave a break loop is to quit the break loop. To do this you enter quit; or type the eof
(end of file) character, which is usually CTRL-D except when using the -e option (see Section 3.1).
Note that GAP code between quit; and the end of the input line is ignored.

Example

brk_02> quit;
brk>

In this case control returns to the break loop one level above or to the main loop, respectively. So
iterated break loops must be left iteratively. Note also that if you type quit; from a gap> prompt,
GAP will exit (see 6.7).

Note: If you leave a break loop with quit without completing a command it is possible (though
not very likely) that data structures will be corrupted or incomplete data have been stored in objects.
Therefore no guarantee can be given that calculations afterwards will return correct results! If you
have been using options quitting a break loop generally leaves the options stack with options you no
longer want. The function ResetOptionsStack (8.1.3) removes all options on the options stack, and
this is the sole intended purpose of this function.

6.4.2 return from a break loop

The other way to leave a break loop is to return from a break loop. To do this you type return; or
return obj;. If the break loop was entered because you interrupted GAP, then you can continue
by typing return;. If the break loop was entered due to an error, you may have to modify the value
of a variable before typing return; (see the example for IsDenseList (21.1.2)) or you may have to
return an object obj (by typing: return obj ;) to continue the computation; in any case, the message
printed on entering the break loop will tell you which of these alternatives is possible. For example, if
the break loop was entered because a variable had no assigned value, the value to be returned is often
a value that this variable should have to continue the computation.

Example
brk> return 9; # we had tried to enter the divisor 9 but typed O ...

1/9
gap>

6.4.3 OnBreak

> OnBreak() (function)

By default, when a break loop is entered, GAP prints a trace of the innermost 5 commands cur-
rently being executed. This behaviour can be configured by changing the value of the global variable
OnBreak. When a break loop is entered, the value of OnBreak is checked. If it is a function, then it is
called with no arguments. By default, the value of OnBreak is Where (6.4.5).

Example
gap> OnBreak := function() Print("Hello\n"); end;
function() ... end

GAP - Reference Manual 88

Example

gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

In cases where a break loop is entered during a function that was called with options (see Chap-
ter 8), a quit; will also cause the options stack to be reset and an Info-ed warning stating this is
emitted at InfoWarning (7.4.7) level 1 (see Chapter 7.4).

Note that for break loops entered by a call to Error (6.6.1), the lines after “Entering break
read-eval-print loop ” and before the brk> prompt can also be customised, namely by re-
defining OnBreakMessage (6.4.4).

Also, note that one can achieve the effect of changing OnBreak locally. As mentioned above,
the default value of OnBreak is Where (6.4.5). Thus, a call to Error (6.6.1) generally gives a trace
back up to five levels of calling functions. Conceivably, we might like to have a function like Error
(6.6.1) that does not trace back without globally changing OnBreak. Such a function we might call
ErrorNoTraceBack and here is how we might define it. (Note ErrorNoTraceBack is not a GAP
function.)

Example
gap> ErrorNoTraceBack := function(arg) # arg is special variable that GAP

> # knows to treat as list of arg’s
> local SavedOnBreak, ENTBOnBreak;

> SavedOnBreak := OnBreak; # save current value of OnBreak
>

> ENTBOnBreak := function() # our ‘local’ OnBreak

> local s;

> for s in arg do

> Print(s);

> od;

> OnBreak := SavedOnBreak; # restore OnBreak afterwards

> end;

>

> OnBreak := ENTBOnBreak;

> Error();

> end;

function(arg...) ... end

Here is a somewhat trivial demonstration of the use of ErrorNoTraceBack.
Example
gap> ErrorNoTraceBack("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

Now we call Error (6.6.1) with the same arguments to show the difference.

GAP - Reference Manual 89

Example
gap> Error("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?
Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

Observe that the value of OnBreak before the ErrorNoTraceBack call was restored. However,
we had changed OnBreak from its default value; to restore OnBreak to its default value, we should do
the following.

Example

gap> OnBreak := Where;;

6.44 OnBreakMessage

> OnBreakMessage () (function)

When a break loop is entered by a call to Error (6.6.1) the message after the “Entering break
read-eval-print loop ...” line is produced by the function OnBreakMessage, which just like
OnBreak (6.4.3) is a user-configurable global variable that is a function with no arguments.

Example
gap> OnBreakMessage(); # By default, OnBreakMessage prints the following
you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

Perhaps you are familiar with what’s possible in a break loop, and so don’t need to be reminded.
In this case, you might wish to do the following (the first line just makes it easy to restore the default
value later).

Example
gap> NormalOnBreakMessage := OnBreakMessage;; # save the default value
gap> OnBreakMessage := function() end; # do-nothing function
function() ... end
gap> OnBreakMessage();
gap> OnBreakMessage := NormalOnBreakMessage;; # reset

With OnBreak (6.4.3) still set away from its default value, calling Error (6.6.1) as we did above,
now produces:

Example

gap> Error("!'\n");

Error, !

Hello

Entering break read-eval-print loop ...
brk> quit; # to get back to outer loop

GAP - Reference Manual 90

However, suppose you are writing a function which detects an error condition and
OnBreakMessage needs to be changed only locally, i.e., the instructions on how to recover from
the break loop need to be specific to that function. The same idea used to define ErrorNoTraceBack
(see OnBreak (6.4.3)) can be adapted to achieve this. The function CosetTableFromGensAndRels
(47.6.5) is an example in the GAP code where the idea is actually used.

6.4.5 Where

> Where (nr) (function)

shows the last nr commands on the execution stack during whose execution the error occurred. If
not given, nr defaults to 5. (Assume, for the following example, that after the last example OnBreak

(6.4.3) has been set back to its default value.)
Example
gap> StabChain(SymmetricGroup(100)); # After this we typed ~C
user interrupt at
bpt := S.orbit[1];
called from

SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S, GeneratorsOfGroup(G), options); called from
StabChainOp(G, rec(

)) called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where(2);
called from
SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from

Note that the variables displayed even in the first line of the Where list (after the called from
line) may be already one environment level higher and DownEnv (6.5.1) may be necessary to access
them.

At the moment this backtrace does not work from within compiled code (this includes the method
selection which by default is compiled into the kernel). If this creates problems for debugging, call
GAP with the -M option (see 3.1) to avoid loading compiled code.

(Function calls to Info (7.4.5) and methods installed for binary operations are handled in a special
way. In rare circumstances it is possible therefore that they do not show up in a Where log but the log
refers to the last proper function call that happened before.)

The command line option -T to GAP disables the break loop. This is mainly intended for testing
purposes and for special applications. If this option is given then errors simply cause GAP to return
to the main loop.

GAP - Reference Manual 91

6.5 Variable Access in a Break Loop

In a break loop access to variables of the current break level and higher levels is possible, but if the
same variable name is used for different objects or if a function calls itself recursively, of course only
the variable at the lowest level can be accessed.

6.5.1 DownEnv and UpEnv

> DownEnv (ar) (function)
> UpEnv(ar) (function)

DownEnv moves down nr steps in the environment and allows one to inspect variables on this
level; if nr is negative it steps up in the environment again; nr defaults to 1 if not given. UpEnv
acts similarly to DownEnv but in the reverse direction (the mnemonic rule to remember the difference
between DownEnv and UpEnv is the order in which commands on the execution stack are displayed by
Where (6.4.5)).

Example
gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on
gap> # entry to break loop
gap> test:= function(n)
> if n > 3 then Error("!'\n"); fi; test(n+1); end;;
gap> test(1);
Error, !

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> n;
4
brk> DownEnv () ;
brk> n;
3
brk> Where();
called from
test(n + 1); called from
test(n+ 1); called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(2);
brk> n;
1
brk> Where();
called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(-2);
brk> n;
3

GAP - Reference Manual 92

brk> quit;
gap> OnBreak := Where;; # restore OnBreak to its default value

Note that the change of the environment caused by DownEnv only affects variable access in the
break loop. If you use return to continue a calculation GAP automatically jumps to the right envi-
ronment level again.

Note also that search for variables looks first in the chain of outer functions which enclosed the
definition of a currently executing function, before it looks at the chain of calling functions which led
to the current invocation of the function.

Example
gap> foo := function()
> local x; x := 1;
> return function() local y; y := x*x; Error("!!\n"); end;
> end;
function() ... end
gap> bar := foo();
function() ... end
gap> fun := function() local x; x := 3; bar(); end;
function() ... end
gap> fun();
Error, !!

called from
bar(); called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> x;
1
brk> DownEnv(1);
brk> x;
3

Here the x of foo which contained the definition of bar is found before that of fun which caused
its execution. Using DownEnv we can access the x from fun.

6.6 Error and ErrorCount

6.6.1 Error

> Error(messages, ...) (function)

Error signals an error from within a function. First the messages messages are printed, this
is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. You can leave
this break loop with return; to continue execution with the statement following the call to Error.
ErrorNoReturn (6.6.2) operates identically to Error, except it does not allow using return; to
continue execution.

GAP - Reference Manual 93

6.6.2 ErrorNoReturn

> ErrorNoReturn(messages, ...) (function)

ErrorNoReturn signals an error from within a function. First the messages messages are printed,
this is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. This break loop
can only be exited with quit;. The function differs from Error (6.6.1) by not allowing execution to
continue.

6.6.3 ErrorCount
> ErrorCount () (function)
ErrorCount returns a count of the number of errors (including user interruptions) which have

occurred in the GAP session so far. The count is incremented by each error, even if GAP was started
with the -T option to disable the break loop.

6.7 Leaving GAP

The normal way to terminate a GAP session is to enter either quit; (note the semicolon) or an end-
of-file character (usually CTRL-D) at the gap> prompt in the main read eval print loop.

6.7.1 QUIT

> QUIT (global variable)

An emergency way to leave GAP is to enter QUIT at any gap> or brk> or brk_nn> prompt.

6.7.2 GAP_EXIT_CODE

> GAP_EXIT_CODE(ret) (function)

A GAP_EXIT_CODE sets the return value which will be used when GAP exits. This may be an
integer, or a boolean (where true is interpreted as 0, and false is interpreted as 1.

6.7.3 QUIT_GAP

> QUIT_GAP ([ret]) (function)

A QUIT_GAP acts similarly to the keyword quit. It exits GAP cleanly, calling any function in-
stalled using InstallAtExit. The optional argument will be passed to GAP_EXIT_CODE.

6.7.4 FORCE_QUIT_GAP

> FORCE_QUIT_GAP ([ret]) (function)

GAP - Reference Manual 94

A FORCE_QUIT_GAP is similar to QUIT_GAP, except it ignores any functions installed with
InstallAtExit, or any other functions normally run at GAP exit, and exits GAP immediately. The
optional argument will be passed to GAP_EXIT_CODE.

6.7.5 InstallAtExit

> InstallAtExit (func) (function)
> QUITTING (global variable)

Before actually terminating, GAP will call (with no arguments) all of the functions that have been
installed using InstallAtExit. These typically perform tasks such as cleaning up temporary files
created during the session, and closing open files. If an error occurs during the execution of one of
these functions, that function is simply abandoned, no break loop is entered.

Example
gap> InstallAtExit(function() Print("bye\n"); end);
gap> quit;
bye

During execution of these functions, the global variable QUITTING will be set to true if GAP is
exiting because the user typed QUIT and false otherwise. Since QUIT is considered as an emergency
measure, different action may be appropriate.

6.7.6 SaveOnkKExitFile

> SaveOnExitFile (global variable)

If, when GAP is exiting due to a quit or end-of-file (i.e. not due to a QUIT) the variable
SaveOnExitFile is bound to a string value, then the system will try to save the workspace to that
file.

6.8 Line Editing

In most installations GAP will be compiled to use the Gnu readline library (see the line Libs used:
on GAP startup). In that case skip to the next section 6.9. (The line editing commands described in
the rest of this section were available in previous versions of GAP, they will work almost the same in
the standard configuration of the Gnu readline library.)

GAP allows one you to edit the current input line with a number of editing commands. Those
commands are accessible either as control keys or as escape keys. You enter a control key by pressing
the CTRL key, and, while still holding the CTRL key down, hitting another key key. You enter an
escape key by hitting ESC and then hitting another key key. Below we denote control keys by CTRL-
key and escape keys by ESC-key. The case of key does not matter, i.e., CTRL-A and CTRL-A are
equivalent.

Normally, line editing will be enabled if the input is connected to a terminal. Line editing can be
enabled or disabled using the command line options -f and -n respectively (see 3.1), however this is
a machine dependent feature of GAP.

Typing CTRL-KEY or ESC-KEY for characters not mentioned below always inserts CTRL-key
resp. ESC-key at the current cursor position.

GAP - Reference Manual 95

The first few commands allow you to move the cursor on the current line.

CTRL-A
move the cursor to the beginning of the line.

Esc-B
move the cursor to the beginning of the previous word.

CTRL-B
move the cursor backward one character.

CTRL-F
move the cursor forward one character.

Esc-F
move the cursor to the end of the next word.

CTRL-E
move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a different
position, with the “yank” command CTRL-Y.

CTRL-H or del
delete the character left of the cursor.

CTRL-D
delete the character under the cursor.

CTRL-K
kill up to the end of the line.

Esc-D
kill forward to the end of the next word.

ESC-DEL
kill backward to the beginning of the last word.

CTRL-X
kill entire input line, and discard all pending input.

CTRL-Y
insert (yank) a just killed text.

The next commands allow you to change the input.

CTRL-T
exchange (twiddle) current and previous character.

Esc-U
uppercase next word.

GAP - Reference Manual 96

Esc-L
lowercase next word.

Esc-C
capitalize next word.

The TAB character, which is in fact the control key CTRL-I, looks at the characters before the
cursor, interprets them as the beginning of an identifier and tries to complete this identifier. If there is
more than one possible completion, it completes to the longest common prefix of all those completions.
If the characters to the left of the cursor are already the longest common prefix of all completions
hitting TAB a second time will display all possible completions.

TAB complete the identifier before the cursor.
The next commands allow you to fetch previous lines, e.g., to correct typos, etc.

CTRL-L
insert last input line before current character.

CTRL-P
redisplay the last input line, another CTRL-P will redisplay the line before that, etc. If the cursor
is not in the first column only the lines starting with the string to the left of the cursor are taken.

CTRL-N
Like CTRL-P but goes the other way round through the history.

Esc-<
goes to the beginning of the history.

Esc->
goes to the end of the history.

CTRL-O
accepts this line and perform a CTRL-N.

Finally there are a few miscellaneous commands.

CTRL-V
enter next character literally, i.e., enter it even if it is one of the control keys.

CTRL-U
execute the next line editing command 4 times.

ESC-num
execute the next line editing command num times.

Esc-CTRL-L
redisplay input line.

The four arrow keys (cursor keys) can be used instead of CTRL-B, CTRL-F, CTRL-P, and CTRL-
N, respectively.

GAP - Reference Manual 97

6.9 Editing using the readline library

The descriptions in this section are valid only if your GAP installation uses the readline library for
command line editing. You can check by IsBound (GAPInfo.UseReadline) ; if this is the case.

You can wuse all the features of readline, as for example explained in
http://tiswww.case.edu/php/chet/readline/rluserman.html. Therefore the command
line editing in GAP is similar to the bash shell and many other programs. On a Unix/Linux system
you may also have a manpage, try man readline.

Compared to the command line editing which was used in GAP up to version 4.4 (or compared to
not using the readline library) using readline has several advantages:

* Most keys still do the same as explained in 6.8 (in the default configuration).

* There are many additional commands, e.g. undoing (CTRL-_, keyboard macros (CTRL-X(,
CTRL-X) and CTRL-XE), file name completion (hit ESC two or four times), showing matching
parentheses, vi-style key bindings, deleting and yanking text, ...

* Lines which are longer than a physical terminal row can be edited more conveniently.
 Arbitrary unicode characters can be typed into string literals.

* The key bindings can be configured, either via your ~/.inputrc file or by GAP commands,
see 6.9.1.

* The command line history can be saved to and read from a file, see 6.9.2.
* Adventurous users can even implement completely new command line editing functions on
GAP level, see 6.9.4.
6.9.1 Readline customization

You can use your readline init file (by default /. inputrc on Unix/Linux) to customize key bindings.
If you want settings be used only within GAP you can write them between lines containing $if GAP
and $endif. For a detailed documentation of the available settings and functions see here.

From readline init file

$if GAP
set blink-matching-paren on
"\C-n": dump-functions
"\ep": kill-region

$endif

Alternatively, from within GAP the command ReadlineInitLine(line) ; can be used, where 1ine
is a string containing a line as in the init file.

Note that after pressing CTRL-V the next special character is input verbatim. This is very
useful to bind keys or key sequences. For example, binding the function key F3 to the com-
mand kill-whole-line by using the sequence CTRL-V F3 looks on many terminals like this:
ReadlineInitLine("\"~[OR\":kill-whole-line");. (You can get the line back later with
CTRL-Y.)

The CTRL-G key can be used to type any unicode character by its code point. The number of the
character can either be given as a count, or if the count is one the input characters before the cursor

http://tiswww.case.edu/php/chet/readline/rluserman.html
http://tiswww.case.edu/php/chet/readline/rluserman.html

GAP - Reference Manual 98

are taken (as decimal number or as hex number which starts with 0x. For example, the double stroke
character Z can be input by any of the three key sequences ESC 8484 CTRL-G, 8484 CTRL-G or
0x2124 CTRL-G.

Some terminals bind the CTRL-S and CTRL-Q keys to stop and restart terminal output. Further-
more, sometimes CTRL-\ quits a program. To disable this behaviour (and maybe use these keys for
command line editing) you can use Exec("stty stop undef; stty start undef; stty quit
undef") ; in your GAP session or your gaprc file (see 3.2).

6.9.2 The command line history

GAP can save your input lines for later reuse. The keys CTRL-P (or UP), CTRL-N (or DOWN), ESC<
and ESC> work as documented in 6.8, that is they scroll backward and forward in the history or go
to its beginning or end. Also, CTRL-O works as documented, it is useful for repeating a sequence of
previous lines. (But CTRL-L clears the screen as in other programs.)

The command line history can be used across several instances of GAP via the following two
commands.

6.9.3 SaveCommandLineHistory

> SaveCommandLineHistory([fname, J][app]) (function)
Returns: fail or number of saved lines
> ReadCommandLineHistory([fname]) (function)

Returns: fail or number of added lines

The first command saves the lines in the command line history to the file given by the string
fname. The default for fname is history in the user’s GAP root path GAPInfo.UserGapRoot or
"~/ .gap_hist" if this directory does not exist. If the optional argument app is true then the lines
are appended to that file otherwise the file is overwritten.

The second command is the converse, it reads the lines from file fname and prepends them to the
current command line history.

By default, the command line history stores up to 1000 input lines. command line history. This
number may be restricted or enlarged via via SetUserPreference ("HistoryMaxLines", num);
which may be set to a non negative number num to store up to num input lines or to infinity to
store arbitrarily many lines. An automatic storing and restoring of the command line history can be
configured via SetUserPreference ("SaveAndRestoreHistory", true);.

Note that these functions are only available if your GAP is configured to use the readline library.

6.9.4 Writing your own command line editing functions

It is possible to write new command line editing functions in GAP as follows.

The functions have one argument 1 which is a list with five entries of the form [count, key,
line, cursorpos, markpos] where count and key are the last pressed key and its count (these
are not so useful here because users probably do not want to overwrite the binding of a single key),
then line is a string containing the line typed so far, cursorpos is the current position of the cursor
(point), and markpos the current position of the mark.

The result of such a function must be a list which can have various forms:

[str]
with a string str. In this case the text str is inserted at the cursor position.

GAP - Reference Manual 99

[kill, begin, end]
where kill is true or false and begin and end are positions on the input line. This removes
the text from the lower position to before the higher position. If kill is true the text is killed,
i.e. put in the kill ring for later yanking.

[begin, end, str]
where begin and end are positions on the input line and str is a string. Then the text from
position begin to before end is substituted by str.

[1, lstr]
where 1str is a list of strings. Then these strings are displayed like a list of possible comple-
tions. The input line is not changed.

[2, chars]
where chars is a string. The characters from chars are used as the next characters from the
input. (At most 512 characters are possible.)

[100]
This rings the bell as configured in the terminal.

In the first three cases the result list can contain a position as a further entry, this becomes the new
cursor position. Or it can contain two positions as further entries, these become the new cursor position
and the new position of the mark.

Such a function can be installed as a macro for readline via InstallReadlineMacro (name,
fun) ; where name is a string used as name of the macro and fun is a function as above. This macro
can be called by a key sequence which is returned by InvocationReadlineMacro (name) ;.

As an example we define a function which puts double quotes around the word under or before
the cursor position. The space character, the characters in " (,)", and the beginning and end of the
line are considered as word boundaries. The function is then installed as a macro and bound to the key
sequence Esc Q.

Example
gap> EditAddQuotes := function(l)
> local str, pos, i, j, new;
> str := 1[3];
> pos := 1[4];
> i := pos;
> while i > 1 and (not str[i-1] in ",(") do
> i:=1i-1;
> od;
> j := pos;
> while IsBound(str[jl) and not str[j] in ",) " do
> J o=+
> od;
> new := "\"";
> Append(new, str{[i..j-11});
> Append(new, "\"");
> return [i, j, new];
> end;;
gap> InstallReadlineMacro("addquotes", EditAddQuotes);
gap> invl := InvocationReadlineMacro("addquotes");;
gap> ReadlineInitLine(Concatenation("\"\\eQ\":\"",invl,"\""));;

GAP - Reference Manual 100

6.10 Editing Files

In most cases, it is preferable to create longer input (in particular GAP programs) separately in an
editor, and to read in the result via Read (9.7.1). Note that Read (9.7.1) by default reads from the
directory in which GAP was started (respectively under Windows the directory containing the GAP
binary), so you might have to give an absolute path to the file.

If you cannot create several windows, the Edit (6.10.1) command may be used to leave GAP,
start an editor, and read in the edited file automatically.

6.10.1 Edit

> Edit(filename) (function)

Edit starts an editor with the file whose filename is given by the string filename, and reads the
file back into GAP when you exit the editor again.

GAP will call your preferred editor if you call SetUserPreference ("Editor", path); where
path is the path to your editor, e.g., /usr/bin/vim. On Windows you can use edit . com.

Under Mac OS X, you should use SetUserPreference("Editor", "open");, this will open
the file in the default editor. If you call SetUserPreference("EditorOptions", ["-t"]);, the
file will open in TextEdit, and SetUserPreference("EditorOptions", ["-a", "<appl>"l);
will open the file using the application <appl>.

This can for example be done in your gap. ini file, see Section 3.2.1.

6.11 Editor Support

In the etc subdirectory of the GAP installation we provide some setup files for the editors vim and
emacs/xemacs.

vim is a powerful editor that understands the basic vi commands but provides much more func-
tionality. You can find more information about it (and download it) from http://www.vim.org.

To get support for GAP syntax in vim, create in your home directory a directory .vim with subdi-
rectories .vim/syntax and .vim/indent (If you are not using Unix, refer to the vim documentation
on where to place syntax files). Then copy the file etc/vim/gap.vimto .vim/syntax/gap.vim and
the file etc/vim/gap_indent.vimto .vim/indent/gap.vim.

Then edit the . vimrc file in your home directory. Add lines as in the following example:
Example

if has("syntax")
syntax on " Default to no syntax highlightning
endif

" For GAP files
augroup gap
" Remove all gap autocommands
au!
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set filetype=gap comments=s:##\ \ ,m:##\

" I’m using the external program ‘par’ for formating comment lines starting
" with ‘## . Include these lines only when you have par installed.
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set formatprg="par w76p4s0j"

\ ,e:##\ \ b:#

http://www.vim.org

GAP - Reference Manual 101

autocmd BufWritePost,FileWritePost *.g,*.gi,*.gd set formatprg="par w76p0s0j"
augroup END

See the headers of the two mentioned files for additional comments and adjust details according to
your personal taste. Send comments and suggestions to support@gap-system.org. Setup files for
emacs/xemacs are contained in the etc/emacs subdirectory.

6.12 Changing the Screen Size

6.12.1 SizeScreen

> SizeScreen([sz]) (function)

Called with no arguments, SizeScreen returns the size of the screen as a list with two entries.
The first is the length of each line, the second is the number of lines.

Called with one argument that is a list sz, SizeScreen sets the size of the screen; The first entry
of sz, if bound, is the length of each line, and the second entry of sz, if bound, is the number of lines.
The values for unbound entries of sz are left unaffected. The function returns the new values.

Note that those parameters can also be set with the command line options -x for the line length
and -y for the number of lines (see Section 3.1).

To check/change whether line breaking occurs for files and streams see PrintFormattingStatus
(10.4.8) and SetPrintFormattingStatus (10.4.8).

The line length must be between 20 and 4096 characters (inclusive) and the number of lines must
be at least 10. Values outside this range will be adjusted to the nearest endpoint of the range.

6.13 Teaching Mode

When using GAP in the context of (undergraduate) teaching it is often desirable to simplify some of
the system output and functionality defaults (potentially at the cost of making the printing of objects
more expensive). This can be achieved by turning on a teaching mode:

6.13.1 TeachingMode

> TeachingMode ([switch]) (function)

When called with a boolean argument switch, this function will turn teaching mode respectively

on or off.
Example

gap> a:=Z(11)"3;

Z(11)-~3

gap> TeachingMode (true) ;

#I Teaching mode is turned ON
gap> a;

ZmodnZ0bj(8,11)

gap> TeachingMode(false);

#I Teaching mode is turned OFF
gap> a;

z(11)"3

mailto://support@gap-system.org

GAP - Reference Manual 102

At the moment, teaching mode changes the following things

Prime Field Elements
Elements of fields of prime order are printed as ZmodnZ0bj (14.5.3) instead as power of a
primitive root.

Quadratic Irrationalities
Elements of a quadratic extension of the rationals are printed using the square root ER (18.4.2)
instead of using roots of unity.

Creation of some small groups
The group creator functions CyclicGroup (50.1.2), AbelianGroup (50.1.3),
ElementaryAbelianGroup (50.1.4), and DihedralGroup (50.1.6) create by default (if
no other representation is specified) not a pc group, but a finitely presented group, which makes
the generators easier to interpret.

Chapter 7

Debugging and Profiling Facilities

This chapter describes some functions that are useful mainly for debugging and profiling purposes.

Probably the most important debugging tool in GAP is the break loop (see Section 6.4) which
can be entered by putting an Error (6.6.1) statement into your code or by hitting Control-C. In the
break loop one can inspect variables, stack traces and issue commands as usual in an interactive GAP
session. See also the DownEnv (6.5.1), UpEnv (6.5.1) and Where (6.4.5) functions.

Sections 7.2 and 7.3 show how to get information about the methods chosen by the method selec-
tion mechanism (see chapter 78).

The final sections describe functions for collecting statistics about computations (see Runtime
(7.6.2), 7.8).

7.1 Recovery from NoMethodFound-Errors

When the method selection fails because there is no applicable method, an error as in the following
example occurs and a break loop is entered:
Example

gap> IsNormal(2,2);

Error, no method found! For debugging hints type 7Recovery from NoMethodFound

Error, no 1st choice method found for ‘IsNormal’ on 2 arguments at GAPROOT/lib/methsel2.g:250 cal
<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)
called from read-eval loop at *stdin*:1

type ’quit;’ to quit to outer loop

brk>

This only says, that the method selection tried to find a method for IsNormal on two arguments
and failed. In this situation it is crucial to find out, why this happened. Therefore there are a few
functions which can display further information. Note that you can leave the break loop by the quit
command (see 6.4.1) and that the information about the incident is no longer accessible afterwards.

7.1.1 ShowArguments

> ShowArguments O (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
as a list the arguments of the operation call for which no method was found.

103

GAP - Reference Manual 104

7.1.2 ShowArgument

> ShowArgument (ar) (function)

This function is only available within a break loop caused by a “No Method Found’-error. It
prints the nr-th arguments of the operation call for which no method was found. ShowArgument
needs exactly one argument which is an integer between 0 and the number of arguments the operation
was called with.

7.1.3 ShowDetails

> ShowDetails() (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints the details of this error: The operation, the number of arguments, a flag which indicates whether
the operation is being traced, a flag which indicates whether the operation is a constructor method,
and the number of methods that refused to apply by calling TryNextMethod (78.4.1). The last num-
ber is called Choice and is printed as an ordinal. So if exactly k& methods were found but called
TryNextMethod (78.4.1) and there were no more methods it says Choice: kth.

7.1.4 ShowMethods

> ShowMethods([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints an overview about the installed methods for those arguments the operation was called with
(using 7.2. The verbosity can be controlled by the optional integer parameter verbosity. The default
is 2, which lists all applicable methods. With verbosity 1 ShowMethods only shows the number of
installed methods and the methods matching, which can only be those that were already called but
refused to work by calling TryNextMethod (78.4.1). With verbosity 3 not only all installed methods
but also the reasons why they do not match are displayed.

7.1.5 ShowOtherMethods

> ShowOtherMethods([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
an overview about the installed methods for a different number of arguments than the number of ar-
guments the operation was called with (using 7.2. The verbosity can be controlled by the optional
integer parameter verbosity. The default is 1 which lists only the number of applicable methods.
With verbosity 2 ShowOtherMethods lists all installed methods and with verbosity 3 also the reasons,
why they are not applicable. Calling ShowOtherMethods with verbosity 3 in this function will nor-
mally not make any sense, because the different numbers of arguments are simulated by supplying the
corresponding number of ones, for which normally no reasonable methods will be installed.

GAP - Reference Manual 105

7.2 Inspecting Applicable Methods

7.2.1 ApplicableMethod

> ApplicableMethod(opr, args[, printlevell[, nr]]) (function)
> ApplicableMethodTypes(opr, args[, printlevel[, nrl]) (function)

Called with two arguments, ApplicableMethod returns the method of highest rank that is appli-
cable for the operation opr with the arguments in the list args. The default printlevel is 0. If no
method is applicable then fail is returned.

If a positive integer is given as the fourth argument nr then ApplicableMethod returns the nr-th
applicable method for the operation opr with the arguments in the list args, where the methods are
ordered according to descending rank. If less than nr methods are applicable then fail is returned.

If the fourth argument nr is the string "all" then ApplicableMethod returns a list of all appli-
cable methods for opr with arguments args, ordered according to descending rank.

Depending on the integer value printlevel, additional information is printed. Admissible values
and their meaning are as follows.

0 no information,

1 information about the applicable method,

2 also information about the not applicable methods of higher rank,

3 also for each not applicable method the first reason why it is not applicable,
4 also for each not applicable method all reasons why it is not applicable.

6 also the function body of the selected method(s)

When a method returned by ApplicableMethod is called then it returns either the desired result
or the string "TRY_NEXT_METHOD", which corresponds to a call to TryNextMethod (78.4.1) in the
method and means that the method selection would call the next applicable method.

Note: The GAP kernel provides special treatment for the infix operations \+, \-, *, \/, \~, \mod
and \in. For some kernel objects (notably cyclotomic numbers, finite field elements and row vectors
thereof) it calls kernel methods circumventing the method selection mechanism. Therefore for these
operations ApplicableMethod may return a method which is not the kernel method actually used.

The function ApplicableMethodTypes takes the types or filters of the arguments as argument (if
only filters are given of course family predicates cannot be tested).

7.3 Tracing Methods

7.3.1 TraceMethods (for operations)

> TraceMethods(oprl, opr2, ...) (function)
> TraceMethods (oprs) (function)

After the call of TraceMethods, whenever a method of one of the operations opri1, opr2, ... is
called, the information string used in the installation of the method is printed. The second form has
the same effect for each operation from the list oprs of operations.

GAP - Reference Manual 106

7.3.2 TraceAllMethods

> TraceAllMethods() (function)

Invokes TraceMethods for all operations.

7.3.3 UntraceMethods (for operations)

> UntraceMethods(oprl, opr2, ...) (function)
> UntraceMethods (oprs) (function)

turns the tracing off for all operations opr1, opr2, ... or in the second form, for all operations in
the list oprs.
Example

gap> TraceMethods([Size]);

gap> g:= Group((1,2,3), (1,2));;

gap> Size(g);

#I Size: for a permutation group at /gap5/lib/grpperm.gi:487
#I Setter(Size): system setter

#I Size: system getter

#I Size: system getter

6

gap> UntraceMethods([Size]);

7.3.4 UntraceAllMethods

> UntraceAllMethods () (function)

Equivalent to calling UntraceMethods for all operations.

7.3.5 TraceImmediateMethods

> TraceImmediateMethods([flag]) (function)
> UntraceImmediateMethods () (function)

TraceImmediateMethods enables tracing for all immediate methods if flag is either true, or
not present. UntraceImmediateMethods, or TraceImmediateMethods with flag equal false
turns tracing off. (There is no facility to trace specific immediate methods.)

Example

gap> TraceImmediateMethods();
gap> g:= Group((1,2,3), (1,2));;
#I RunImmediateMethods

#I immediate: Size

#I immediate: IsCyclic

#I immediate: IsCommutative
#I immediate: IsTrivial

gap> Size(g);

#I immediate: IsPerfectGroup
#I immediate: IsNonTrivial

#I immediate: Size

GAP - Reference Manual 107

#I immediate: IsFreeAbelian

#I immediate: IsTorsionFree

#I immediate: IsNonTrivial

#I immediate: IsPerfectGroup
#I immediate: GeneralizedPcgs
#I immediate: IsEmpty

6

gap> UntraceImmediateMethods();
gap> UntraceMethods([Size]);

This example gives an explanation for the two calls of the “system getter” for Size (30.4.6).
Namely, there are immediate methods that access the known size of the group. Note that the group
g was known to be finitely generated already before the size was computed, the calls of the imme-
diate method for IsFinitelyGeneratedGroup (39.15.17) after the call of Size (30.4.6) have other
arguments than g.

7.4 Info Functions

The Info (7.4.5) mechanism permits operations to display intermediate results or information about
the progress of the algorithms. Information is always given according to one or more info classes.
Each of the info classes defined in the GAP library usually covers a certain range of algorithms, so for
example InfoLattice covers all the cyclic extension algorithms for the computation of a subgroup
lattice.

Note that not all info classes defined in the GAP library are currently documented. Many GAP
packages define additional info classes, which are typically documented in the corresponding package
documentation.

The amount of information to be displayed by each info class can be separately specified by the
user. This is done by selecting a non-negative integer level for the info class: no information will be
displayed at level 0, and the higher the level, the more information that will be displayed. At creation,
an info class has level 0. By default, all built-in GAP info classes have level 0, except for the following
info classes, which have level 1:

* InfoWarning (7.4.7),

* InfoPackageLoading (76.2.5),
* InfoDebug,

e InfoPerformance,

* InfoTempDirectories,

e InfoPrimelInt, and

e InfoSLP.

7.4.1 NewlnfoClass

> NewInfoClass (name) (operation)

creates a new info class with name name.

GAP - Reference Manual 108

7.4.2 DeclareInfoClass

> DeclareInfoClass (name) (function)

creates a new info class with name name and binds it to the global variable name. The variable
must previously be writable, and is made readonly by this function.

7.4.3 SetInfolevel

> SetInfolevel (infoclass, level) (operation)
Sets the info level for infoclass to the non-negative integer level.

7.4.4 InfoLevel

> InfoLevel (infoclass) (operation)

returns the info level of infoclass.

7.4.5 Info

> Info(infoclass, level, info[, moreinfo, ...]) (function)

If the info level of infoclass is atleast 1evel, then the remaining arguments, info, and possibly
moreinfo and so on, are evaluated. (Technically, Info is a keyword and not a function.)

By default, the results of these evaluations are viewed, preceded by the string "#I " and followed
by a newline.

If the info level of infoclass is strictly less than 1evel, then the third and subsequent arguments
are not evaluated. (The latter can save substantial time when displaying difficult results.)

The behaviour can be customized with SetInfoHandler (7.4.6).

Example
gap> InfoExample:=NewInfoClass("InfoExample");;

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
gap> SetInfolevel (InfoExample,1);

gap> Info(InfoExample,1,"one") ;Info(InfoExample,2,"two");
#I one

gap> SetInfolevel (InfoExample,?2);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

#I one

#I two

gap> InfoLevel (InfoExample) ;
2

gap> Info(InfoExample,3,Length(Combinations([1..9999]1)));

Note that the last Info call is executed without problems, since the actual level 2 of InfoExample
causes Info to ignore the last argument, which prevents Length (Combinations ([1..9999])) from
being evaluated; note that an evaluation would be impossible due to memory restrictions.

A set of info classes (called an info selector) may be passed to a single Info statement. As a
shorthand, info classes and selectors may be combined with + rather than Union (30.5.3). In this case,
the message is triggered if the level of any of the classes is high enough.

GAP - Reference Manual 109

Example
gap> InfoExample:=NewInfoClass("InfoExample");;

gap> SetInfolevel (InfoExample,0);

gap> Info(InfoExample + InfoWarning, 1, "hello");
#I hello

gap> Info(InfoExample + InfoWarning, 2, "hello");
gap> SetInfolLevel (InfoExample,2);

gap> Info(InfoExample + InfoWarning, 2, "hello");

#I hello
gap> InfolLevel(InfoWarning);
1

7.4.6 Customizing Info (7.4.5) statements

> SetInfoHandler (infoclass, handler) (function)
> SetInfoOutput(infoclass, out) (function)
> UnbindInfoOutput(infoclass) (function)
> InfoOutput(infoclass) (function)
> SetDefaultInfolOutput (out) (function)
Returns: nothing
This allows one to customize what happens in an Info(infoclass, level, ...) statement.

In the first function, handler must be a function with three arguments infoclass, level, list.
Here 1ist is the list containing the third argument and any subsequent optional arguments of the Info
(7.4.5) call.

The default handler is the function DefaultInfoHandler. It prints "#I ", then the third and
further arguments of the info statement, and finally a "\n".

If the first argument of an Info (7.4.5) statement is a sum of Info classes, the handler of the first
summand is used.

The file or stream to which Info (7.4.5) statements for individual Info (7.4.5) classes print
can be overriden with SetInfoOutput, retrieved with InfoOutput and reset to the default with
UnbindInfoOutput. The initial default for all Info (7.4.5) classes is the string "*Print*" which
means the current output file. The default can be changed with SetDefaultInfoOutput. The ar-
gument out can be a filename or an open stream, the special names "*Print*", "*errout* and
"xstdout* are also recognized.

For example, SetDefaultInfoQutput ("*errout*"); would send Info (7.4.5) output to stan-
dard error, which can be interesting if GAPs output is redirected.

7.4.7 InfoWarning

> InfoWarning (info class)

is an info class to which general warnings are sent at level 1, which is its default level. More
specialised warnings are shown via calls of Info (7.4.5) at InfoWarning level 2, e.g. information
about the autoloading of GAP packages and the initial line matched when displaying an on-line help
topic.

GAP - Reference Manual 110

7.5 Assertions

Assertions are used to find errors in algorithms. They test whether intermediate results conform to
required conditions and issue an error if not.

7.5.1 SetAssertionLevel

> SetAssertionLevel(lev) (function)

assigns the global assertion level to 1ev. By default it is zero.

7.5.2 AssertionLevel

> AssertionLevel() (function)

returns the current assertion level.

7.5.3 Assert

> Assert(lev, cond[, message]) (function)

With two arguments, if the global assertion level is at least Iev, condition cond is tested and if it
does not return true an error is raised. Thus Assert (lev, cond) is equivalent to the code

Example
if AssertionlLevel() >= lev and not <cond> then

Error("Assertion failure");
fi;

With the message argument form of the Assert statement, if the global assertion level is at least
lev, condition cond is tested and if it does not return true then message is evaluated and printed.

Assertions are used at various places in the library. Thus turning assertions on can slow code
execution significantly.

7.6 Timing
7.6.1 Runtimes
> Runtimes() (function)

Runtimes returns a record with components bound to integers or fail. Each integer is the cpu
time (processor time) in milliseconds spent by GAP in a certain status:

user_time
cpu time spent with GAP functions (without child processes).

system_time
cpu time spent in system calls, e.g., file access (fail if not available).

GAP - Reference Manual 111

user_time_children
cpu time spent in child processes (fail if not available).

system_time_children
cpu time spent in system calls by child processes (fail if not available).

Note that this function is not fully supported on all systems. Only the user_time component is
(and may on some systems include the system time).
The following example demonstrates tasks which contribute to the different time components:

Example

gap> Runtimes(); # after startup

rec(user_time := 3980, system_time := 60, user_time_children := O,
system_time_children := 0)

gap> Exec("cat /usr/bin/*||wc"); # child process with a lot of file access

893799 7551659 200928302

gap> Runtimes();

rec(user_time := 3990, system_time := 60, user_time_children := 1590,
system_time_children := 600)

gap> a:=0;;for i in [1..100000000] do a:=a+l; od; # GAP user time

gap> Runtimes();

rec(user_time := 12980, system_time := 70, user_time_children := 1590,
system_time_children := 600)

gap> 7blabla # first call of help, a lot of file access

Help: no matching entry found

gap> Runtimes();

rec(user_time := 13500, system_time := 440, user_time_children := 1590,
system_time_children := 600)

7.6.2 Runtime

> Runtime () (function)

Runtime returns the time spent by GAP in milliseconds as an integer. It is the same as the value
of the user_time component given by Runtimes (7.6.1), as explained above.
See StringTime (27.10.9) for a translation from milliseconds into hour/minute format.

7.6.3 NanosecondsSinceEpoch

> NanosecondsSinceEpoch () (function)
> NanosecondsSinceEpochInfo() (function)

NanosecondsSinceEpoch returns the time in nanoseconds that has passed since some fixed, but
unspecified time in the past. This function is appropriate for doing wallclock time measurements. The
actual resolution depends on the system that GAP is run on. Information about the used timers can
be obtained by calling NanosecondsSinceEpochInfo, which returns a record containing members
Method, Monotonic, Reliable and Resolution.

Method is a string describing the method used to obtain timer values. This will usually contain the
name of the syscall used.

GAP - Reference Manual 112

Monotonic is a boolean. If it is true, then the values returned by NanosecondsSinceEpoch are
guaranteed to be strictly monotonically increasing between two calls, if it is false then there is no
such guarantee.

Resolution is an integer reflecting the resolution of the timer used in nanoseconds.

Reliable is a boolean. If it is true then the value Resolution is deemed reliable in the sense
that it was obtained by querying the operating system, otherwise Resolution should be treated as an
estimate.

7.6.4 time

> time (global variable)

In the read-eval-print loop, time stores the number of milliseconds the last command took (see
also memory_allocated (7.7.2) for the number of bytes of memory it allocated).

7.6.5 Sleep

> Sleep(time) (function)
> NanoSleep(time) (function)

These functions make GAP stop execution for a given period of time. The time to stop is given to
Sleep in seconds and NanoSleep in nanoseconds.

7.7 Tracking Memory Usage
7.7.1 TotalMemoryAllocated
> TotalMemoryAllocated() (function)

TotalMemoryAllocated returns the total amount of memory in bytes allocated by the GAP mem-
ory manager since GAP started.

7.7.2 memory_allocated

> memory_allocated (global variable)

In the read-eval-print loop, memory_allocated (7.7.2) stores the number of bytes of memory
allocated by the last completed statement (see also time (7.6.4) for the number of milliseconds it
took).

7.8 Profiling

Profiling of code can be used to determine in which parts of a program how much time has been
spent and how much memory has been allocated during runtime. GAP has two different methods of
profiling. GAP can either profile by function, or line-by-line. Line by line profiling is currently only
used for code coverage, while function profiling tracks memory and time usage.

GAP - Reference Manual 113

7.8.1 Function Profiling

This section describes how to profiling at the function level. The idea is that

* first one switches on profiling for those GAP functions the performance of which one wants to
check,

* then one runs some GAP computations,
* then one looks at the profile information collected during these computations,

e then one runs more computations (perhaps clearing all profile information before, see
ClearProfile (7.8.10)),

* and finally one switches off profiling.

For switching on and off profiling, GAP supports entering a list of functions (see
ProfileFunctions (7.8.5), UnprofileFunctions (7.8.6)) or a list of operations whose methods
shall be (un)profiled (ProfileMethods (7.8.7), UnprofileMethods (7.8.8)), and DisplayProfile
(7.8.9) can be used to show profile information about functions in a given list.

Besides these functions, ProfileGlobalFunctions (7.8.2), ProfileOperations (7.8.3), and
ProfileOperationsAndMethods (7.8.4) can be used for switching on or off profiling for all global
functions, operations, and operations together with all their methods, respectively, and for showing
profile information about these functions.

Note that GAP will perform more slowly when profiling than when not.

7.8.2 ProfileGlobalFunctions

> ProfileGlobalFunctions([bool]) (function)

Called with argument true, ProfileGlobalFunctions starts profiling of all functions that have
been declared via DeclareGlobalFunction (79.18.14). Old profile information for all these func-
tions is cleared. A function call with the argument false stops profiling of all these functions.
Recorded information is still kept, so you can display it even after turning the profiling off.

When ProfileGlobalFunctions is called without argument, profile information for all global
functions is displayed, see DisplayProfile (7.8.9).

7.8.3 ProfileOperations

> ProfileOperations([bool]) (function)

Called with argument true, ProfileOperations starts profiling of all operations. Old profile
information for all operations is cleared. A function call with the argument false stops profiling of
all operations. Recorded information is still kept, so you can display it even after turning the profiling
off.

When ProfileOperations is called without argument, profile information for all operations is
displayed (see DisplayProfile (7.8.9)).

GAP - Reference Manual 114

7.8.4 ProfileOperationsAndMethods

> ProfileOperationsAndMethods([bool]) (function)

Called with argument true, ProfileOperationsAndMethods starts profiling of all operations
and their methods. Old profile information for these functions is cleared. A function call with the
argument false stops profiling of all operations and their methods. Recorded information is still
kept, so you can display it even after turning the profiling off.

When ProfileOperationsAndMethods is called without argument, profile information for all
operations and their methods is displayed, see DisplayProfile (7.8.9).

7.8.5 ProfileFunctions

> ProfileFunctions (funcs) (function)

starts profiling for all function in the list funcs. You can use ProfileGlobalFunctions (7.8.2)
to turn profiling on for all globally declared functions simultaneously.

7.8.6 UnprofileFunctions

> UnprofileFunctions(funcs) (function)

stops profiling for all function in the list funcs. Recorded information is still kept, so you can
display it even after turning the profiling off.

7.8.7 ProfileMethods

> ProfileMethods (ops) (function)

starts profiling of the methods for all operations in the list ops.

7.8.8 UnprofileMethods

> UnprofileMethods (ops) (function)

stops profiling of the methods for all operations in the list ops. Recorded information is still kept,
so you can display it even after turning the profiling off.

7.8.9 DisplayProfile

> DisplayProfile([functions,][mincount, mintime]) (function)
> GAPInfo.ProfileThreshold (global variable)

Called without arguments, DisplayProfile displays the profile information for profiled opera-
tions, methods and functions. If an argument functions is given, only profile information for the
functions in the list functions is shown. If two integer values mincount, mintime are given as ar-
guments then the output is restricted to those functions that were called at least mincount times or for

GAP - Reference Manual 115

which the total time spent (see below) was at least mintime milliseconds. The defaults for mincount
and mintime are the entries of the list stored in the global variable GAPInfo.ProfileThreshold.

The default value of GAPInfo.ProfileThresholdis [10000, 30].

Profile information is displayed in a list of lines for all functions (including operations and meth-
ods) which are profiled. For each function, “count” gives the number of times the function has been
called. “self/ms” gives the time (in milliseconds) spent in the function itself, “‘chld/ms” the time (in
milliseconds) spent in profiled functions called from within this function, “stor/kb” the amount of
storage (in kilobytes) allocated by the function itself, “chld/kb” the amount of storage (in kilobytes)
allocated by profiled functions called from within this function, and “package” the name of the GAP
package to which the function belongs; the entry “GAP” in this column means that the function be-
longs to the GAP library, the entry “(oprt.)” means that the function is an operation (which may
belong to several packages), and an empty entry means that FilenameFunc (5.1.4) cannot determine
in which file the function is defined.

The list is sorted according to the total time spent in the functions, that is the sum of the values in
the columns “self/ms” and “chld/ms”.

At the end of the list, two lines are printed that show the total time used and the total memory
allocated by the profiled functions not shown in the list (label 0THER) and by all profiled functions
(label TOTAL), respectively.

An interactive variant of DisplayProfile is the function BrowseProfile (Browse: Browse-
Profile) that is provided by the GAP package Browse.

7.8.10 ClearProfile

> ClearProfile() (function)

clears all stored profile information.

7.8.11 An Example of Function Profiling

Let us suppose we want to get information about the computation of the conjugacy classes of a certain
permutation group. For that, first we create the group, then we start profiling for all global functions
and for all operations and their methods, then we compute the conjugacy classes, and then we stop
profiling.

Example

gap> g:= PrimitiveGroup(24, 1);;

gap> ProfileGlobalFunctions(true);

gap> ProfileOperationsAndMethods(true);
gap> ConjugacyClasses(g);;

gap> ProfileGlobalFunctions(false);

gap> ProfileOperationsAndMethods(false);

Now the profile information is available. We can list the information for all profiled functions with
DisplayProfile (7.8.9).

Example
gap> DisplayProfile();
count self/ms chld/ms stor/kb chld/kb package function
17647 0 0 275 0 GAP BasePoint
10230 0 0 226 0 (oprt.) ShallowCopy

GAP - Reference Manual

10139 0 0 0
10001 0 0 688
10001 8 0 28
14751 12 0 0
10830 8 4 182
2700 20 12 313
2444 28 4 3924
4368 0 32 7
2174 32 4 1030
585 4 32 45
1632 32 8 194
1221 8 32 349
185309 28 12 0
336 4 40 95
4 28 20 488
2798 0 52 54
560 4 48 83
432 16 40 259
185553 48 8 915
26 0 64 0

26 0 64 0

26 0 64 0
152 4 64 0
1605 0 68 0
26 0 68 0
382 0 96 69
5130 4 96 309
7980 24 116 330
12076 12 136 351
192 0 148 4
2208 4 148 3
217 0 160 0
217 12 148 60
216 36 464 334
1479 12 668 566
1453 12 684 56
126 0 728 13

1 0 736 0

2 0 736 2

1 0 736 0
13400 1164 0 0
484 12052

2048 23319

688

276

55
317
714
116
742

56
420

817
454
944
628
461
94
2023
2023
2023
2024
2032
2024
1922
3165
6434
6478
3029
3083
3177
3117
12546
18474
18460
19233
19671
19678
19675

(oprt.)

GAP
GAP
GAP
(oprt.)
GAP
GAP
GAP
GAP
(oprt.)
GAP
(oprt.)
GAP
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
GAP
GAP
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
GAP
GAP
GAP
GAP
(oprt.)
GAP
(oprt.)

PositionSortedOp: for*
UniteSet: for two intx*
UniteSet

=: for two families: =*
Concatenation
AddRefinement
ConjugateStabChain
Size

List

RRefine
AddGeneratorsExtendSc*
Partition

Length
ExtendSeriesPermGroup
Sortex
StabChainForcePoint
StabChainSwap
SubmagmaWithInversesNC
Add

CentralizerQOp
CentralizerOp: perm g*
Centralizer: try to ex*
Centralizer
StabilizerOfExternalS*
Meth(StabilizerOfExtex
TryPcgsPermGroup
ForAll

ChangeStabChain
ProcessFixpoint
StabChainMutable: calx*
StabChainMutable
StabChainOp
StabChainOp: group an*
PartitionBacktrack
RepOpElmTuplesPermGrox*
in: perm class rep
ConjugacyClassesTry
ConjugacyClassesByRanx*
ConjugacyClasses
ConjugacyClasses: perx*
Position

OTHER

TOTAL

116

We can restrict the list to global functions with ProfileGlobalFunctions (7.8.2).

gap> ProfileGlobalFunctions();
count self/ms chld/ms stor/kb

17647 0 0 275
10830 8 4 182
2700 20 12 313
2444 28 4 3924

Example

chld/kb
0

276

55

317

package
GAP
GAP
GAP
GAP

function

BasePoint
Concatenation
AddRefinement
ConjugateStabChain

GAP - Reference Manual

2174 32 4 1030 116
585 4 32 45 742
1532 32 8 194 56
1221 8 32 349 420
336 4 40 95 817
2798 0 52 54 944
560 4 48 83 628
432 16 40 259 461
382 0 96 69 1922
5130 4 96 309 3165
7980 24 116 330 6434
12076 12 136 351 6478
216 36 464 334 12546
1479 12 668 566 18474
126 0 728 13 19233
1 0 736 0 19671

1804 14536

2048 23319

GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP

117

List

RRefine
AddGeneratorsExtendScx*
Partition
ExtendSeriesPermGroup
StabChainForcePoint
StabChainSwap
SubmagmaWithInversesNC
TryPcgsPermGroup
ForAll

ChangeStabChain
ProcessFixpoint
PartitionBacktrack
RepOpElmTuplesPermGrox*
ConjugacyClassesTry
ConjugacyClassesByRanx*
OTHER

TOTAL

We can restrict the list to operations with ProfileOperations (7.8.3).

Example
gap> ProfileOperations();
count self/ms chld/ms stor/kb chld/kb

10230 0 0 226 0
10001 8 0 28 688
4368 0 32 7 714
185309 28 12 0 0
4 28 20 488 454
185553 48 8 915 94
26 0 64 0 2023
152 4 64 0 2024
1605 0 68 0 2032
2208 4 148 3 3083
217 0 160 0 3177
2 0 736 2 19678
13400 1164 0 0 0
764 21646
2048 23319

package
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.

NN N N N A S P S

function
ShallowCopy
UniteSet

Size

Length

Sortex

Add
CentralizerQOp
Centralizer
StabilizerOfExternalSx*
StabChainMutable
StabChainOp
ConjugacyClasses
Position

OTHER

TOTAL

We can restrict the list to operations and their methods with ProfileOperationsAndMethods

(7.8.4).
Example

gap> ProfileOperationsAndMethods() ;
count self/ms chld/ms stor/kb chld/kb

10230 0 0 226 0
10139 0 0 0 0
10001 0 0 688 0
10001 8 0 28 688
14751 12 0 0 0

4368 0 32 7 714
185309 28 12 0 0

package
(oprt.)
(oprt.)

(oprt.)
(oprt.)

function

ShallowCopy
PositionSortedOp: forx*
UniteSet: for two intx*
UniteSet

=: for two families: *
Size

Length

GAP - Reference Manual

4 28 20 488 454 (oprt.) Sortex
185553 48 8 915 94 (oprt.) Add
26 0 64 0 2023 (oprt.) CentralizerOp
26 0 64 0 2023 GAP CentralizerOp: perm g*
26 0 64 0 2023 GAP Centralizer: try to ex
152 4 64 0 2024 (oprt.) Centralizer
1605 0 68 0 2032 (oprt.) StabilizerOfExternalS*
26 0 68 0 2024 GAP Meth(StabilizerOfExtex
192 0 148 4 3029 GAP StabChainMutable: calx*
2208 4 148 3 3083 (oprt.) StabChainMutable
217 0 160 0 3177 (oprt.) StabChainOp
217 12 148 60 3117 GAP StabChainOp: group an*
1453 12 684 56 18460 GAP in: perm class rep
2 0 736 2 19678 (oprt.) ConjugacyClasses
1 0 736 0 19675 GAP ConjugacyClasses: per*
13400 1164 0 0 0 (oprt.) Position
728 20834 OTHER
2048 23319 TOTAL

118

Finally, we can restrict the list to explicitly given functions with DisplayProfile (7.8.9), by
entering the list of functions as an argument.

Example

gap> DisplayProfile([StabChainOp, Centralizer]);

count self/ms chld/ms stor/kb chld/kb package function
152 4 64 0 2024 (oprt.) Centralizer
217 0 160 0 3177 (oprt.) StabChainOp
2044 23319 OTHER
2048 23319 TOTAL

7.8.12 Line By Line Profiling

Line By Line profiling tracks which lines have been executed in a piece of GAP code. Built into
GAP are the methods necessary to generate profiles, the resulting profiles can be displayed with the
’profiling” package.

7.8.13 Line by Line profiling example

There are two kinds of profiles GAP can build:

* Coverage : This records which lines of code are executed
* Timing : This records how much time is spend executing each line of code

A timing profile provides more information, but will take longer to generate and parse. A timing
profile is generated using the functions ProfileLineByLine (7.8.14) and UnprofileLineByLine

(7.8.16), as follows:
Example

gap> ProfileLineByLine("output.gz");
gap> Size(AlternatingGroup(10)); ; # Execute some GAP code you want to profile
gap> UnprofileLineByLine();

GAP - Reference Manual 119

For code coverage, use instead the functions CoverageLineByLine (7.8.15) and
UncoverageLineByLine (7.8.17). The profiler will only record lines which are read and ex-
ecuted while the profiler is running. If you want to perform code coverage or profile GAP’s
library, then you can use the GAP command line option ’—cover filename.gz’, which executes
CoverageLineByLine (7.8.15) before GAP starts. Similarly the option "—prof filename.gz’ executes
ProfileLineByLine (7.8.14) before GAP starts. The profiler is designed for high performance,
because of this, there are some limitations which users should be aware of:

* By default the profiler records the wall-clock time which has passed, rather than the CPU time
taken (because it is lower overhead), so any time taken writing commands will be charged to the
last GAP statement which was executed. Therefore it is better to write a function which starts
profiling, executes your code, and then stops profiling.

* If you end the filename with ".gz", the resulting file will automatically be compressed. This is
highly recommended!

* The profiler can only track GAP code which occurs in a function — this is most obvious when
looking at code coverage examples, which will appear to miss lines of code in files not in a
function.

Profiles are transformed into a human-readable form with ’profiling’ package, for example with the
’OutputAnnotatedCodeCoverageFiles’ function.

7.8.14 ProfileLineByLine

> ProfilelLineByLine(filename[, options]) (function)

ProfileLineByLine begins GAP recording profiling data to the file filename. This file will
get *very* large very quickly. This file is compressed using gzip to reduce its size. options is an
optional dictionary, which sets various configuration options. These are

coverage
Boolean (defaults to false). If this is enabled, only information about which lines are read and
executed is stored. Enabling this is the same as calling CoverageLineByLine (7.8.15). Using
this ignores all other options.

wallTime
Boolean (defaults to true). Sets if time should be measured using wall-clock time (true) or CPU
time (false). (measuring CPU-time has a higher overhead).

recordMem
Boolean (defaults to false). Instead of recording the CPU time taken by statements, record the
total size of all new objects created by each line.

resolution
Integer (defaults to 0). By default profiling will record a trace of all executed code. When
resolution non-zero, GAP instead samples which piece of code is being executed every
resolution nanoseconds. Increasing this improves performance and produces smaller traces,
at the cost of accuracy. GAP will still accurately record which statements are executed at least
once.

GAP - Reference Manual 120

7.8.15 CoverageLineByLine

> CoverageLineByLine(filename) (function)

CoverageLineByLine begins GAP recording code coverage to the file filename. This is equiv-
alent to calling ProfileLineByLine (7.8.14) with coverage=true.

7.8.16 UnprofileLineByLine

> UnprofileLineByLine() (function)

Stops profiling which was previously started with ProfilelLineByLine (7.8.14) or
CoverageLineByLine (7.8.15).

7.8.17 UncoverageLineByLine

> UncoveragelLineByLine () (function)

Stops profiling which was previously started with ProfileLineByLine (7.8.14) or
CoverageLineByLine (7.8.15).

7.8.18 ActivateProfileColour

> ActivateProfileColour () (function)
Called with argument true, ActivateProfileColour makes GAP colour functions when print-

ing them to show which lines have been executed while profiling was active via ProfileLineByLine
(7.8.14) at any time during this GAP session. Passing false disables this behaviour.

7.8.19 IsLineByLineProfileActive

> IsLineByLineProfileActive() (function)

IsLineByLineProfileActive returns if line-by-line profiling is currently activated.

7.8.20 DisplayCacheStats

> DisplayCacheStats() (function)

displays statistics about the different caches used by the method selection.

7.8.21 ClearCacheStats

> ClearCacheStats() (function)

clears all statistics about the different caches used by the method selection.

GAP - Reference Manual 121

7.9 Information about the version used

The global variable GAPInfo.Version (see GAPInfo (3.5.1)) contains the version number of the
version of GAP. Its value can be checked other version number using CompareVersionNumbers
(76.3.9).

To produce sample citations for the used version of GAP or for a package available in this GAP
installation, use Cite (76.3.17).

If you wish to report a problem to GAP Support or GAP Forum, it may be useful to not only report
the version used, but also to include the GAP banner displays the information about the architecture
for which the GAP binary is built, used libraries and loaded packages.

7.10 Test Files

Test files are used to check that GAP produces correct results in certain computations. A selection of
test files for the library can be found in the tst directory of the GAP distribution.

7.10.1 Starting and stopping test

> START_TEST (i d) (function)
> STOP_TEST(file) (function)

START_TEST (7.10.1) and STOP_TEST (7.10.1) may be optionally used in files that are read via
Test (7.10.2). If used, START_TEST (7.10.1) reinitialize the caches and the global random number
generator, in order to be independent of the reading order of several test files. Furthermore, the asser-
tion level (see Assert (7.5.3)) is set to 2 (if it was lower before) by START_TEST (7.10.1) and set back
to the previous value in the subsequent STOP_TEST (7.10.1) call.

To use these options, a test file should be started with a line

Example
gap> START_TEST("arbitrary identifier string");

(Note that the gap> prompt is part of the line!)
and should be finished with a line
Example

gap> STOP_TEST("filename");

Here the string "filename" should give the name of the test file.

Note that the functions in tst/testutil.g temporarily replace STOP_TEST (7.10.1) before they
call Test (7.10.2).

If you want to run a quick test of your GAP installation (though this is not required), you can read
in a test script that exercises some GAP’s capabilities.

Example

gap> Read(Filename(DirectoriesLibrary("tst"), "testinstall.g"));
Example

test file time (msec)

testing:, /gap4rb/tst/zlattice.tst

zlattice.tst 0

GAP - Reference Manual 122

testing: /gap4r5/tst/gaussian.tst
gaussian.tst 10
[further lines deleted]

If you want to run a more advanced check (this is not required and make take up to an hour), you can
read teststandard.g which is an extended test script performing all tests from the tst directory.

Example
gap> Read(Filename(DirectoriesLibrary("tst"), "teststandard.g"));

7.10.2 Test

> Test(fname[, optrec]) (function)

Returns: true or false.

The argument fname must be the name of a file or an open input stream. The content of this file
or stream should contain GAP input and output. The function Test runs the input lines, compares
the actual output with the output stored in fname and reports differences. With an optional record as
argument optrec details of this process can be adjusted.

More precisely, the content of fname must have the following format.

Lines starting with "gap> " are considered as GAP input, they can be followed by lines starting with
"> " if the input is continued over several lines.

To allow for comments in fname the following lines are ignored by default: lines at the beginning of
fname that start with "#" or are empty, and one empty line together with one or more lines starting
with "#".

All other lines are considered as GAP output from the preceding GAP input.

By default the actual GAP output is compared exactly with the stored output, and if these are
different some information about the differences is printed.

If any differences are found then Test returns false, otherwise true.

If the optional argument optrec is given it must be a record. The following components of
optrec are recognized and can change the default behaviour of Test:

ignoreComments
If set to false then no lines in fname are ignored as explained above (default is true).

width
The screen width used for the new output (default is 80).

compareFunction
This must be a function that gets two strings as input, the newly generated and the stored output
of some GAP input. The function must return true or false, indicating if the strings should
be considered equivalent or not. By default \= (31.11.1) is used.
Two strings are recognized as abbreviations in this component: "uptowhitespace" checks if
the two strings become equal after removing all white space. And "uptonl" compares the
string up to trailing newline characters.

reportDiff
A function that gets six arguments and reports a difference in the output: the GAP input, the
expected GAP output, the newly generated output, the name of tested file, the line number of
the input, the time to run the input. (The default is demonstrated in the example below.)

GAP - Reference Manual 123

rewriteToFile
If this is bound to a string it is considered as a file name and that file is written with the same
input and comment lines as fname but the output substituted by the newly generated version; if
it is bound to true, then this is treated as if it was bound to fname (default is false).

writeTimings
If this is bound to a string it is considered as a file name, that file is written and contains timing
information for each input in fname.

compareTimings
If this is bound to a string it is considered as name of a file to which timing information was
stored via writeTimings in a previous call. The new timings are compared to the stored ones.
By default only commands which take more than a threshold of 100 milliseconds are consid-
ered, and only differences of more than 20% are considered significant. These defaults can be
overwritten by assigning a list [timingfile, threshold, percentage] to this component.
(The default of compareTimings is false.)

reportTimeDiff
This component can be used to overwrite the default function to display timing differences. It
must be a function with 5 arguments: GAP input, name of test file, line number, stored time,
new time.

ignoreSTOP_TEST

By default set to true, in that case the output of GAP input starting with "STOP_TEST" is not
checked.

showProgress
If this is true then GAP prints position information and the input line before it is processed;
if set to "some", then GAP shows the current line number of the test being processed; if set to
false, no progress updates are displayed (default is "some" if GAP’s output goes to a terminal,
otherwise false).

subsWindowsLineBreaks
If this is true then GAP substitutes DOS/Windows style line breaks "\r\n" by UNIX style line
breaks "\n" after reading the test file. (default is true).

returnNumFailures
If this is true then GAP returns the number of input lines of the test file which had differences
in their output, instead of returning true or false.

Example
gap> tnam := Filename(DirectoriesLibrary(), "../doc/ref/demo.tst");;
gap> mask := function(str) return Concatenation("| ",
> JoinStringsWithSeparator(SplitString(str, "\n", ""), "\nl "),

> "\n"); end;;

gap> Print(mask(StringFile(tnam)));

| # this is a demo file for the ’Test’ function
| #

| gap> g := Group((1,2), (1,2,3));

| Group([(1,2), (1,2,3) 1)

|

GAP - Reference Manual 124

| # another comment following an empty line
| # the following fails:

| gap> a := 13+29;

| 41

gap> ss := InputTextString(StringFile(tnam));;
gap> Test(ss);

########> Diff in test stream, line 8:

Input is:

a := 13+29;

Expected output:

41

But found:

42

HH#HHAH

false

gap> RewindStream(ss) ;

true

gap> dtmp := DirectoryTemporary();;

gap> ftmp := Filename(dtmp,"demo.tst");;

gap> Test(ss, rec(reportDiff := Ignore, rewriteToFile := ftmp));
false

gap> Test(ftmp);

true

gap> Print (mask(StringFile(ftmp)));

| # this is a demo file for the ’Test’ function
#
gap> g := Group((1,2), (1,2,3));
Group([(1,2), (1,2,3) 1)

the following fails:
gap> a := 13+29;

I
I
I
I
| # another comment following an empty line
I
I
| 42

7.10.3 TestDirectory

> TestDirectory(inlist[, optrec]) (function)

Returns: true or false.

The argument inlist must be either a single filename or directory name, or a list of filenames
and directories. The function TestDirectory will take create a list of files to be tested by taking any
files in inlist, and recursively searching any directories in inlist for files ending in .tst. Each
of these files is then run through Test (7.10.2), and the results printed, and true returned if all tests
passed.

If the optional argument optrec is given it must be a record. The following components of
optrec are recognized and can change the default behaviour of TestDirectory:

testOptions
A record which will be passed on as the second argument of Test (7.10.2) if present.

earlyStop
If true, stop as soon as any Test (7.10.2) fails (defaults to false).

GAP - Reference Manual 125

showProgress
Print information about how tests are progressing (defaults to "some" if GAP’s output goes to a
terminal, otherwise false).

suppressStatusMessage
suppress displaying status messages #I Errors detected while testing and #I No
errors detected while testing after the test (defaults to false).

rewriteToFile
If true, then rewrite each test file to disc, with the output substituted by the results of running
the test (defaults to false).

exclude
A list of file and directory names which will be excluded from testing (defaults to [1).

exitGAP
Rather than returning true or false, exit GAP with the return value of GAP set to success or
fail, depending on if all tests passed (defaults to false).

See also TestPackage (76.3.5) for the information on running standard tests for GAP packages.

7.11 Debugging Recursion

The GAP interpreter monitors the level of nesting of GAP functions during execution. By default,
whenever this nesting reaches a multiple of 5000, GAP enters a break loop (6.4) allowing you to
terminate the calculation, or enter RETURN ; to continue it.
Example
gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function(depth) ... end
gap> dive(100);
gap> OnBreak:= function() Where(l); end; # shorter traceback
function() ... end
gap> dive(6000) ;
recursion depth trap (5000)

at
dive(depth - 1);

called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
gap> dive(11000) ;
recursion depth trap (5000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...

GAP - Reference Manual 126

you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (10000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue

brk> return;

gap>

This behaviour can be controlled using the following procedures.

7.11.1 SetRecursionTrapInterval

> SetRecursionTrapInterval (interval) (function)
> GetRecursionDepth () (function)

GetRecursionDepth returns the nesting level of the GAP interpreter. This is reset to O every time
the break loop is entered. SetRecursionTrapInterval sets the depth of the stack at which GAP
will enter the Break loop. interval must be a non-negative small integer (between 0 and 2%%). An
interval of 0 suppresses the monitoring of recursion altogether. In this case excessive recursion may
cause GAP to crash.

Example
gap> GetRecursionDepth();
0
gap> dive := function(depth)
> if depth>1 then
> dive(depth-1);
> else
> Print ("Depth ", GetRecursionDepth());
> fi;
> end;;

gap> SetRecursionTrapInterval(1000) ;
gap> dive(100);
Depth 100
gap> dive(2500);
recursion depth trap (1000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue

brk> return;

GAP - Reference Manual 127

recursion depth trap (2000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you may ’return;’ to continue

brk> GetRecursionDepth();

0

brk> return;

gap> SetRecursionTrapInterval(-1);

SetRecursionTrapInterval(<interval>): <interval> must be a non-negative smal\
1 integer

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <interval> via ’return <interval>;’ to continue
brk> return 0;

gap> dive(20000) ;

Depth 20000

gap> dive(2000000) ;

Segmentation fault

7.12 Global Memory Information

The GAP environment provides automatic memory management, so that the programmer does not
need to concern themselves with allocating space for objects, or recovering space when objects are
no longer needed. The component of the kernel which provides this is called GASMAN (GAP Storage
MANager). Messages reporting garbage collections performed by GASMAN can be switched on by the
-g command line option (see section 3.1). There are also some facilities to access information from
GASMAN from GAP programs.

7.12.1 GasmanStatistics

> GasmanStatistics() (function)

GasmanStatistics returns a record containing some information from the garbage collection
mechanism. The record may contain up to four components: full, partial, npartial, and nfull.

The full component will be present if a full garbage collection has taken place since GAP started.
It contains information about the most recent full garbage collection. It is a record, with eight compo-
nents: livebags contains the number of bags which survived the garbage collection; 1ivekb contains
the total number of kilobytes occupied by those bags; deadbags contains the total number of bags
which were reclaimed by that garbage collection and all the partial garbage collections preceding it,
since the previous full garbage collection; deadkb contains the total number of kilobytes occupied by
those bags; freekb reports the total number of kilobytes available in the GAP workspace for new
objects; totalkb reports the actual size of the workspace; time reports the CPU time in milliseconds

GAP - Reference Manual 128

spent on the last garbage collection and cumulative the total CPU time in milliseconds spent on that
type of garbage collection since GAP started.

These figures should be viewed with some caution. They are stored internally in fixed length
integer formats, and deadkb and deadbags are liable to overflow if there are many partial collections
before a full collection. Also, note that 1ivekb and freekb will not usually add up to totalkb. The
difference is essentially the space overhead of the memory management system.

The partial component will be present if there has been a partial garbage collection since the
last full one. It is also a record with the same six components as full. In this case deadbags and
deadkb refer only to the number and total size of the garbage bags reclaimed in this partial garbage
collection and 1ivebagsand 1ivekb only to the numbers and total size of the young bags that were
considered for garbage collection, and survived.

The npartial and nfull components will contain the number of full and partial garbage collec-
tions performed since GAP started.

7.12.2 GasmanMessageStatus

> GasmanMessageStatus () (function)
> SetGasmanMessageStatus(stat) (function)

GasmanMessageStatus returns one of the strings "none", "full", or "all", depending on
whether the garbage collector is currently set to print messages on no collections, full collections
only, or all collections, respectively.

Calling SetGasmanMessageStatus with the argument stat, which should be one of the three
strings mentioned above, sets the garbage collector messaging level.

7.12.3 GasmanLimits

> GasmanLimits() (function)

GasmanLimits returns a record with three components: min is the minimum workspace size as
set by the -m command line option in kilobytes. The workspace size will never be reduced below this
by the garbage collector. max is the maximum workspace size, as set by the *-0’ command line option,
also in kilobytes. If the workspace would need to grow past this point, GAP will enter a break loop to
warn the user. A value of 0 indicates no limit. kill is the absolute maximum, set by the -K command
line option. The workspace will never be allowed to grow past this limit.

Chapter 8

Options Stack

GAP supports a global options system. This is intended as a way for the user to provide guidance to
various algorithms that might be used in a computation. Such guidance should not change mathemati-
cally the specification of the computation to be performed, although it may change the algorithm used.
A typical example is the selection of a strategy for the Todd-Coxeter coset enumeration procedure. An
example of something not suited to the options mechanism is the imposition of exponent laws in the
p-Quotient algorithm.

The basis of this system is a global stack of records. All the entries of each record are thought of
as options settings, and the effective setting of an option is given by the topmost record in which the
relevant field is bound.

The reason for the choice of a stack is the intended pattern of use:

PushOptions(rec(stuff));

DoSomething(args) ;

PopOptions();

This can be abbreviated, to DoSomething(args : stuff); with a small additional abbre-
viation of stuff permitted. See 4.11.2 for details. The full form can be used where the same options
are to run across several calls, or where the DoSomething procedure is actually an infix operator, or
other function with special syntax.

An alternative to this system is the use of additional optional arguments in procedure calls. This is
not felt to be sufficient because many procedure calls might cause, for example, a coset enumeration
and each would need to make provision for the possibility of extra arguments. In this system the
options are pushed when the user-level procedure is called, and remain in effect (unless altered) for all
procedures called by it.

Note that in some places in the system optional records containing options which are valid only
for the immediate function or method call are in fact used.

8.1 Functions Dealing with the Options Stack

8.1.1 PushOptions

> PushOptions(options, record) (function)

This function pushes a record of options onto the global option stack. Note that PushOptions (
rec(opt:= fail)) has the effect of resetting the option opt, since an option that has never been

129

GAP - Reference Manual 130

set has the value fail returned by ValueOption (8.1.5).
Note that there is no check for misspelt or undefined options.

8.1.2 PopOptions

> PopOptions() (function)

This function removes the top-most options record from the options stack if there is one.

8.1.3 ResetOptionsStack

> ResetOpt ionsStack() (function)

unbinds (i.e. removes) all the options records from the options stack.

Note: ResetOptionsStack should not be used within a function. Its intended use is to clean
up the options stack in the event that the user has quit from a break loop, so leaving a stack of
no-longer-needed options (see 6.4.1).

8.1.4 OnQuit

> OnQuit () (function)

called when a user selects to quit; a break loop entered via execution of Error (6.6.1). As GAP
starts up, OnQuit is defined to do nothing, in case an error is encountered during GAP start-up. Later
in the loading process we redefine OnQuit to do a variant of ResetOptionsStack (8.1.3) to ensure
the options stack is empty after a user quits an Error (6.6.1)-induced break loop. (OnQuit differs
from ResetOptionsStack (8.1.3) in that it warns when it does something rather than the other way
round.) Currently, OnQuit is not advertised, since exception handling may make it obsolete.

8.1.5 ValueOption
> ValueOption(opt) (function)
This function is a method for accessing the options stack without changing it; opt should be the

name of an option, i.e. a string. A function which makes decisions that might be affected by options
should examine the result of ValueOption. If opt is currently not set then fail is returned.

8.1.6 DisplayOptionsStack

> DisplayOptionsStack() (function)

This function prints a human-readable display of the complete options stack.

8.1.7 InfoOptions

> InfoOptions (info class)

GAP - Reference Manual 131

This info class can be used to enable messages about options being changed (level 1) or accessed
(level 2).

8.2 Options Stack — an Example

The example below shows simple manipulation of the Options Stack, first using PushOptions (8.1.1)
and PopOptions (8.1.2) and then using the special function calling syntax.

Example
gap> foo := function()
> Print ("myoptl = ", ValueOption("myoptl"),
> " myopt2 = ",ValueOption("myopt2"),"\n");
> end;
function() ... end
gap> foo();

myoptl = fail myopt2 = fail
gap> PushOptions(rec(myoptl := 17));
gap> foo();
myoptl = 17 myopt2 = fail
gap> DisplayOptionsStack();
[rec(
myoptl := 17)]
gap> PopOptions();
gap> foo();
myoptl = fail myopt2 = fail
gap> foo(: myoptl, myopt2 := [Z(3),"aardvark"]);
myoptl = true myopt2 = [Z(3), "aardvark"]
gap> DisplayOptionsStack();
L1
gap>

Chapter 9

Files and Filenames

Files are identified by filenames, which are represented in GAP as strings. Filenames can be created
directly by the user or a program, but of course this is operating system dependent.

Filenames for some files can be constructed in a system independent way using the following
functions. This is done by first getting a directory object for the directory the file shall reside in, and
then constructing the filename. However, it is sometimes necessary to construct filenames of files in
subdirectories relative to a given directory object. In this case the directory separator is always / even
under DOS or MacOS.

Section 9.3 describes how to construct directory objects for the common GAP and system direc-
tories. Using the command Filename (9.4.1) it is possible to construct a filename pointing to a file in
these directories. There are also functions to test for accessibility of files, see 9.6.

9.1 Portability

For portability filenames and directory names should be restricted to at most 8 alphanumerical charac-
ters optionally followed by a dot . and between 1 and 3 alphanumerical characters. Upper case letters
should be avoided because some operating systems do not make any distinction between case, so that
NaMe, Name and name all refer to the same file whereas some operating systems are case sensitive. To
avoid problems only lower case characters should be used.

Another function which is system-dependent is LastSystemError (9.1.1).

9.1.1 LastSystemError
> LastSystemError () (function)
LastSystemError returns a record describing the last system error that has occurred. This record

contains at least the component message which is a string. This message is, however, highly operating
system dependent and should only be used as an informational message for the user.

9.2 GAP Root Directories

When GAP is started it determines a list of directories which we call the GAP root directories. In a
running GAP session this list can be found in GAPInfo.RootPaths.

132

GAP - Reference Manual 133

The core part of GAP knows which files to read relative to its root directories. For exam-
ple when GAP wants to read its library file 1ib/group.gd, it appends this path to each path in
GAPInfo.RootPaths until it finds the path of an existing file. The first file found this way is read.

Furthermore, GAP looks for available packages by examining the subdirectories pkg/ in each of
the directories in GAPInfo.RootPaths.

The root directories are specified via one or several of the -1 paths command line options, see
3.1. Furthermore, by default GAP automatically prepends a user specific GAP root directory to the
list; this can be avoided by calling GAP with the -r option. The name of this user specific directory
depends on your operating system, it can be found in GAPInfo.UserGapRoot. This directory can be
used to tell GAP about personal preferences, to always load some additional code, to install additional
packages, or to overwrite some GAP files. See 3.2 for more information how to do this.

9.3 Directories

9.3.1 IsDirectory

> IsDirectory(obj) (Category)

IsDirectory is a category of directories.

9.3.2 Directory

> Directory (string) (operation)

returns a directory object for the string string. Directory understands "." for “current direc-
tory”, that is, the directory in which GAP was started. It also understands absolute paths.

If the variable GAPInfo.UserHome is defined (this may depend on the operating system) then
Directory understands a string with a leading ~ (tilde) character for a path relative to the user’s
home directory (but a string beginning with "~other_user" is not interpreted as a path relative to
other_user’s home directory, as in a UNIX shell).

Paths are otherwise taken relative to the current directory.

9.3.3 DirectoryTemporary

> DirectoryTemporary () (function)

returns a directory object in the category IsDirectory (9.3.1) for a new temporary directory. This
is guaranteed to be newly created and empty immediately after the call to DirectoryTemporary.
GAP will make a reasonable effort to remove this directory upon termination of the GAP job that
created the directory.

If DirectoryTemporary is unable to create a new directory, fail is returned. In this case
LastSystemError (9.1.1) can be used to get information about the error.

A warning message is given if more than 1000 temporary directories are created in any GAP
session.

GAP - Reference Manual 134

9.3.4 DirectoryCurrent

> DirectoryCurrent () (function)

returns the directory object for the current directory.

9.3.5 DirectoriesLibrary

> DirectoriesLibrary([name]) (function)

DirectoriesLibrary returns the directory objects for the GAP library name as a list. name must
be one of "1ib" (the default), "doc", "tst", and so on.

The string "" is also legal and with this argument DirectoriesLibrary returns the list of GAP
root directories. The return value of this call differs from GAPInfo.RootPaths in that the former is a
list of directory objects and the latter a list of strings.

The directory name must exist in at least one of the root directories, otherwise fail is returned.

As the files in the GAP root directories (see 9.2) can be distributed into different directories in the
filespace a list of directories is returned. In order to find an existing file in a GAP root directory you
should pass that list to Filename (9.4.1) as the first argument. In order to create a filename for a new
file inside a GAP root directory you should pass the first entry of that list. However, creating files
inside the GAP root directory is not recommended, you should use DirectoryTemporary (9.3.3)
instead.

9.3.6 DirectoriesSystemPrograms

> DirectoriesSystemPrograms O (function)

DirectoriesSystemPrograms returns the directory objects for the list of directories where the
system programs reside, as a list. Under UNIX this would usually represent $PATH.

9.3.7 DirectoryContents

> DirectoryContents(dir) (function)

This function returns a list of filenames/directory names that reside in the directory dir. The
argument dir can either be given as a string indicating the name of the directory or as a directory
object (see IsDirectory (9.3.1)). It is an error, if such a directory does not exist.

The ordering of the list entries can depend on the operating system.

An interactive way to show the contents of a directory is provided by the function
BrowseDirectory (Browse: BrowseDirectory) from the GAP package Browse.

9.3.8 DirectoryDesktop
> DirectoryDesktop() (function)
returns a directory object for the users desktop directory as defined on many modern operating

systems. The function is intended to provide a cross-platform interface to a directory that is easily
accessible by the user. Under Unix systems (including Mac OS X) this will be the Desktop directory

GAP - Reference Manual 135

in the users home directory if it exists, and the users home directory otherwise. Under Windows it will
the users Desktop folder (or the appropriate name under different languages).

9.3.9 DirectoryHome

> DirectoryHome () (function)

returns a directory object for the users home directory, defined as a directory in which the user
will typically have full read and write access. The function is intended to provide a cross-platform
interface to a directory that is easily accessible by the user. Under Unix systems (including Mac OS
X) this will be the usual user home directory. Under Windows it will the users My Documents folder
(or the appropriate name under different languages).

9.4 File Names

9.4.1 Filename

> Filename(dir, name) (operation)
> Filename(list-of-dirs, name) (operation)

If the first argument is a directory object dir, Filename returns the (system dependent) filename
as a string for the file with name name in the directory dir. Filename returns the filename regardless
of whether the directory contains a file with name name or not.

If the first argument is a list 1ist-of-dirs (possibly of length 1) of directory objects, then
Filename searches the directories in order, and returns the filename for the file name in the first
directory which contains a file name or fail if no directory contains a file name.

For example, in order to locate the system program date use DirectoriesSystemPrograms
(9.3.6) together with the second form of Filename.

Example
gap> path := DirectoriesSystemPrograms();;
gap> date := Filename(path, "date");
"/bin/date"

In order to locate the library file files.gd use DirectoriesLibrary (9.3.5) together with the
second form of Filename.

Example
gap> path := DirectoriesLibrary();;

gap> Filename(path, "files.gd");
"./lib/files.gd"

In order to construct filenames for new files in a temporary directory use DirectoryTemporary
(9.3.3) together with the first form of Filename.
Example
gap> tmpdir := DirectoryTemporary();;
gap> Filename([tmpdir], "file.new");
fail
gap> Filename(tmpdir, "file.new");
"/var/tmp/tmp.0.021738.0001/file.new"

GAP - Reference Manual 136

9.5 Special Filenames

The special filename "*stdin*" denotes the standard input, i.e., the stream through which the user
enters commands to GAP. The exact behaviour of reading from "*stdin*" is operating system de-
pendent, but usually the following happens. If GAP was started with no input redirection, statements
are read from the terminal stream until the user enters the end of file character, which is usually CTRL-
D. Note that terminal streams are special, in that they may yield ordinary input after an end of file.
Thus when control returns to the main read-eval-print loop the user can continue with GAP. If GAP
was started with an input redirection, statements are read from the current position in the input file up
to the end of the file. When control returns to the main read eval view loop the input stream will still
return end of file, and GAP will terminate.

The special filename "*errinx*" denotes the stream connected to the UNIX stderr output. This
stream is usually connected to the terminal, even if the standard input was redirected, unless the
standard error stream was also redirected, in which case opening of "*errin*" fails.

The special filename "*stdout*" can be used to print to the standard output.

The special filename "*errout*" can be used to print to the standard error output file, which is
usually connected to the terminal, even if the standard output was redirected.

9.6 File Access

When the following functions return false one can use LastSystemError (9.1.1) to find out the
reason (as provided by the operating system), see the examples.

9.6.1 IsExistingFile

> IsExistingFile(filename) (function)

IsExistingFile returns true if a file with the filename filename exists and can be seen by the
GAP process. Otherwise false is returned.

Example
gap> IsExistingFile("/bin/date"); # file ‘/bin/date’ exists
true
gap> IsExistingFile("/bin/date.new"); # non existing ‘/bin/date.new’
false

gap> IsExistingFile("/bin/date/new"); # ‘/bin/date’ is not a directory
false

gap> LastSystemError() .message;

"Not a directory"

9.6.2 IsReadableFile

> IsReadableFile(filename) (function)

IsReadableFile returns true if a file with the filename filename exists and the GAP process
has read permissions for the file, or false if this is not the case.

Example
gap> IsReadableFile("/bin/date"); # file ‘/bin/date’ is readable
true

GAP - Reference Manual 137

gap> IsReadableFile("/bin/date.new"); # non-existing ¢/bin/date.new’
false

gap> LastSystemError() .message;

"No such file or directory"

9.6.3 IsWritableFile

> IsWritableFile(filename) (function)

IsWritableFile returns true if a file with the filename filename exists and the GAP process
has write permissions for the file, or false if this is not the case.

Example
gap> IsWritableFile("/bin/date"); # file ‘/bin/date’ is not writable
false

9.6.4 IsExecutableFile

> IsExecutableFile(filename) (function)

IsExecutableFile returns true if a file with the filename filename exists and the GAP process
has execute permissions for the file, or false if this is not the case. Note that execute permissions do
not imply that it is possible to execute the file, e.g., it may only be executable on a different machine.

Example
gap> IsExecutableFile("/bin/date"); # ... but executable
true
9.6.5 IsDirectoryPath
> IsDirectoryPath(filename) (function)

IsDirectoryPath returns true if the file with the filename filename exists and is a direc-
tory, and false otherwise. Note that this function does not check if the GAP process actually
has write or execute permissions for the directory. You can use IsWritableFile (9.6.3), resp.
IsExecutableFile (9.6.4) to check such permissions.

9.7 File Operations

9.7.1 Read

> Read(filename) (operation)

reads the input from the file with the filename filename, which must be given as a string.

Read first opens the file filename. If the file does not exist, or if GAP cannot open it, e.g.,
because of access restrictions, an error is signalled.

Then the contents of the file are read and evaluated, but the results are not printed. The reading
and evaluations happens exactly as described for the main loop (see 6.1).

GAP - Reference Manual 138

If a statement in the file causes an error a break loop is entered (see 6.4). The input for this break
loop is not taken from the file, but from the input connected to the stderr output of GAP. If stderr
is not connected to a terminal, no break loop is entered. If this break loop is left with quit (or CTRL-
D), GAP exits from the Read command, and from all enclosing Read commands, so that control is
normally returned to an interactive prompt. The QUIT statement (see 6.7) can also be used in the break
loop to exit GAP immediately.

Note that a statement must not begin in one file and end in another. lL.e., eof (end-of-file) is not
treated as whitespace, but as a special symbol that must not appear inside any statement.

Note that one file may very well contain a read statement causing another file to be read, before
input is again taken from the first file. There is an upper limit of 15 on the number of files that may be
open simultaneously.

9.7.2 ReadAsFunction

> ReadAsFunction(filename) (operation)

reads the file with filename filename as a function and returns this function.

Example

Suppose that the file /tmp/example.g contains the following
Example

local a;

a := 10;

return ax*x10;

Reading the file as a function will not affect a global variable a.

Example

gap> a := 1;

1

gap> ReadAsFunction("/tmp/example.g") ();

100

gap> a;

1
9.7.3 PrintTo and AppendTo
> PrintTo(filename[, obj1l, ...]) (function)
> AppendTo(filename[, objl, ...1) (function)

PrintTo works like Print (6.3.4), except that the arguments obj1, ... (if present) are printed to
the file with the name filename instead of the standard output. This file must of course be writable
by GAP. Otherwise an error is signalled. Note that PrintTo will overwrite the previous contents of
this file if it already existed; in particular, PrintTo with just the filename argument empties that file.

AppendTo works like PrintTo, except that the output does not overwrite the previous contents of
the file, but is appended to the file.

There is an upper limit of 15 on the number of output files that may be open simultaneously.

Note that one should be careful not to write to a logfile (see LogTo (9.7.4)) with PrintTo or
AppendTo.

GAP - Reference Manual 139

9.74 LogTo

> LogTo(filename) (operation)
> LogTo O (operation)

Calling LogTo with a string filename causes the subsequent interaction to be logged to the file
with the name filename, i.e., everything you see on your terminal will also appear in this file. (LogTo
(10.4.5) may also be used to log to a stream.) This file must of course be writable by GAP, otherwise
an error is signalled. Note that LogTo will overwrite the previous contents of this file if it already
existed.

Called without arguments, LogTo stops logging to a file or stream.

9.7.5 InputLogTo

> InputLogTo(filename) (operation)
> InputLogTo O (operation)

Calling InputLogTo with a string filename causes the subsequent input to be logged to the
file with the name filename, i.e., everything you type on your terminal will also appear in this file.
Note that InputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo and
OutputLogTo (9.7.6) can. Note that InputLogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, InputLogTo stops logging to a file or stream.

9.7.6 OutputLogTo

> OutputLogTo (filename) (operation)
> UutputLogTo O (operation)

Calling OutputLogTo with a string filename causes the subsequent output to be logged to the
file with the name filename, i.e., everything GAP prints on your terminal will also appear in this file.
Note that OutputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo (9.7.5)
and OutputLogTo can. Note that QutputLogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, QutputLogTo stops logging to a file or stream.

9.7.7 CrcFile

> CrcFile(filename) (function)

CRC (cyclic redundancy check) numbers provide a certain method of doing checksums. They are
used by GAP to check whether files have changed.

CrcFile computes a checksum value for the file with filename filename and returns this value as
an integer. The function returns fail if a system error occurred, say, for example, if filename does
not exist. In this case the function LastSystemError (9.1.1) can be used to get information about the
error.

GAP - Reference Manual 140

Example

gap> CrcFile("lib/morpheus.gi");
2705743645

9.7.8 RemoveFile

> RemoveFile(filename) (function)

will remove the file with filename filename and returns true in case of success. The function
returns fail if a system error occurred, for example, if your permissions do not allow the removal of
filename. In this case the function LastSystemError (9.1.1) can be used to get information about
the error.

9.7.9 UserHomeExpand

> UserHomeExpand (str) (function)

If the string str starts with a >~ character this function returns a new string with the leading >~
substituted by the users home directory as stored in GAPInfo.UserHome. Otherwise str is returned
unchanged.

9.7.10 Reread

> Reread(filename) (function)
> REREADING (global variable)

In general, it is not possible to read the same GAP library file twice, or to read a compiled version
after reading a GAP version, because crucial global variables are made read-only (see 4.9) and filters
and methods are added to global tables.

A partial solution to this problem is provided by the function Reread (and related functions
RereadLib etc.). Reread(filename) sets the global variable REREADING to true, reads the file
named by filename and then resets REREADING. Various system functions behave differently when
REREADING is set to true. In particular, assignment to read-only global variables is permitted, calls
to NewRepresentation (79.2.1) and NewInfoClass (7.4.1) with parameters identical to those of
an existing representation or info class will return the existing object, and methods installed with
InstallMethod (78.2.1) may sometimes displace existing methods.

This function may not entirely produce the intended results, especially if what has changed is the
super-representation of a representation or the requirements of a method. In these cases, it is necessary
to restart GAP to read the modified file.

An additional use of Reread is to load the compiled version of a file for which the GAP language
version had previously been read (or perhaps was included in a saved workspace). See 76.3.11 and
3.3 for more information.

It is not advisable to use Reread programmatically. For example, if a file that contains calls to
Reread is read with Reread then REREADING may be reset too early.

Chapter 10

Streams

Streams provide flexible access to GAP’s input and output processing. An input stream takes charac-
ters from some source and delivers them to GAP which reads them from the stream. When an input
stream has delivered all characters it is at end-of -stream. An output stream receives characters from
GAP which writes them to the stream, and delivers them to some destination.

A major use of streams is to provide efficient and flexible access to files. Files can be read and
written using Read (9.7.1) and AppendTo (9.7.3), however the former only allows a complete file to
be read as GAP input and the latter imposes a high time penalty if many small pieces of output are
written to a large file. Streams allow input files in other formats to be read and processed, and files to
be built up efficiently from small pieces of output. Streams may also be used for other purposes, for
example to read from and print to GAP strings, or to read input directly from the user.

Any stream is either a text stream, which translates the end-of-1ine character (\n) to or from the
system’s representation of end-of-line (e.g., new-line under UNIX and carriage-return-new-line
under DOS), or a binary stream, which does not translate the end-of -1ine character. The processing
of other unprintable characters by text streams is undefined. Binary streams pass them unchanged.

Whereas it is cheap to append to a stream, streams do consume system resources, and only a
limited number can be open at any time, therefore it is necessary to close a stream as soon as possible
using CloseStream (10.2.1). If creating a stream failed then LastSystemError (9.1.1) can be used
to get information about the failure.

10.1 Categories for Streams and the StreamsFamily

10.1.1 IsStream

> IsStream(obj) (Category)

Streams are GAP objects and all open streams, input, output, text and binary, lie in this category.

10.1.2 IsClosedStream

> IsClosedStream(obj) (Category)

When a stream is closed, its type changes to lie in IsClosedStream. This category is used to
install methods that trap accesses to closed streams.

141

GAP - Reference Manual 142

10.1.3 IsInputStream

> IsInputStream(obj) (Category)

All input streams lie in this category, and support input operations such as ReadByte (10.3.3) (see
10.3)

10.1.4 IsInputTextStream

> IsInputTextStream(obj) (Category)

All text input streams lie in this category. They translate new-line characters read.

10.1.5 IsInputTextNone

> IsInputTextNone (obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.6 IsOutputStream

> IsOutputStream(obj) (Category)

All output streams lie in this category and support basic operations such as WriteByte (10.4.1)
(see Section 10.4).

10.1.7 IsOutputTextStream

> IsOutputTextStream(obj) (Category)

All text output streams lie in this category and translate new-line characters on output.

10.1.8 IsOutputTextNone

> IsOutputTextNone(obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.9 StreamsFamily

> StreamsFamily (family)

All streams lie in the StreamsFamily.

GAP - Reference Manual 143

10.2 Operations applicable to All Streams

10.2.1 CloseStream

> CloseStream(stream) (operation)

In order to preserve system resources and to flush output streams every stream should be closed as
soon as it is no longer used using CloseStream.

It is an error to try to read characters from or write characters to a closed stream. Closing a stream
tells the GAP kernel and/or the operating system kernel that the file is no longer needed. This may
be necessary because the GAP kernel and/or the operating system may impose a limit on how many
streams may be open simultaneously.

10.2.2 FileDescriptorOfStream

> FileDescriptorOfStream(stream) (operation)

returns the UNIX file descriptor of the underlying file. This is mainly useful for the UNIXSelect
(10.2.3) function call. This is as of now only available on UNIX-like operating systems and only for
streams to local processes and local files.

10.2.3 UNIXSelect

> UNIXSelect(inlist, outlist, exclist, timeoutsec, timeoutusec) (function)

makes the UNIX C-library function select accessible from GAP for streams. The functionality
is as described in the man page (see UNIX file descriptors (integers) for streams. They can be obtained
via FileDescriptorOfStream (10.2.2) for streams to local processes and to local files. The argu-
ment timeoutsec is a timeout in seconds as in the struct timeval on the C level. The argument
timeoutusec is analogously in microseconds. The total timeout is the sum of both. If one of those
timeout arguments is not a small integer then no timeout is applicable (fail is allowed for the timeout
arguments).

The return value is the number of streams that are ready, this may be 0 if a timeout was specified.
All file descriptors in the three lists that are not yet ready are replaced by fail in this function. So the
lists are changed!

This function is only available if your operating system has select, which is detected during
compilation of GAP.

10.3 Operations for Input Streams

Two operations normally used to read files: Read (9.7.1) and ReadAsFunction (9.7.2) can also be
used to read GAP input from a stream. The input is immediately parsed and executed. When reading
from a stream str, the GAP kernel generates calls to ReadLine (str) to supply text to the parser.

Three further operations: ReadByte (10.3.3), ReadLine (10.3.4) and ReadA1l (10.3.5), support
reading characters from an input stream without parsing them. This can be used to read data in any
format and process it in GAP.

GAP - Reference Manual 144

Additional operations for input streams support detection of end of stream, and (for those streams
for which it is appropriate) random access to the data.

10.3.1 Read (for streams)
> Read(input-text-stream) (operation)
reads the input-text-stream as input until end-of -stream occurs. See 9.7 for details.

10.3.2 ReadAsFunction (for streams)

> ReadAsFunction(input-text-stream) (operation)

reads the input-text-stream as function and returns this function. See 9.7 for details.
Example
a’ does not change the global one

gap> # a function with local ¢

gap> a := 1;;

gap> i := InputTextString("local a; a := 10; return a*10;");;
gap> ReadAsFunction(i) O);

100

gap> a;

1

gap> # reading it via ‘Read’ does

gap> i := InputTextString("a := 10;");;
gap> Read(i);

gap> a;

10

10.3.3 ReadByte

> ReadByte (input-stream) (operation)

ReadByte returns one character (returned as integer) from the input stream input-stream.
ReadByte returns fail if there is no character available, in particular if it is at the end of a file.

If input-stream is the input stream of a input/output process, ReadByte may also return fail
if no byte is currently available.

ReadByte is the basic operation for input streams. If a ReadByte method is installed for a user-
defined type of stream which does not block, then all the other input stream operations will work
(although possibly not at peak efficiency).

ReadByte will wait (block) until a byte is available. For instance if the stream is a connection to
another process, it will wait for the process to output a byte.

10.3.4 ReadLine
> ReadLine(input-stream) (operation)
ReadLine returns one line (returned as string with the newline) from the input stream

input-stream. ReadLine reads in the input until a newline is read or the end-of-stream is en-
countered.

GAP - Reference Manual 145

If input-stream is the input stream of a input/output process, ReadLine may also return fail or
return an incomplete line if the other process has not yet written any more. It will always wait (block)
for at least one byte to be available, but will then return as much input as is available, up to a limit of
one line

A default method is supplied for ReadLine which simply calls ReadByte (10.3.3) repeatedly. This
is only safe for streams that cannot block. The kernel uses calls to ReadLine to supply input to the
parser when reading from a stream.

10.3.5 ReadAll

> ReadAll(input-stream[, 1imit]) (operation)

ReadAll returns all characters as string from the input stream stream-in. It waits (blocks) until
at least one character is available from the stream, or until there is evidence that no characters will
ever be available again. This last indicates that the stream is at end-of-stream. Otherwise, it reads
as much input as it can from the stream without blocking further and returns it to the user. If the
stream is already at end of file, so that no bytes are available, fail is returned. In the case of a file
stream connected to a normal file (not a pseudo-tty or named pipe or similar), all the bytes should be
immediately available and this function will read the remainder of the file.

With a second argument, at most 1imit bytes will be returned. Depending on the stream a
bounded number of additional bytes may have been read into an internal buffer.

A default method is supplied for ReadA11 which simply calls ReadLine (10.3.4) repeatedly. This
is only really safe for streams which cannot block. Other streams should install a method for ReadAll
Example
gap> i := InputTextString("1Hallo\nYou\ni");;
gap> ReadByte(i);

49

gap> CHAR_INT(last);
) 1 b

gap> ReadLine(i);
"Hallo\n"

gap> ReadLine(i);
"You\n"

gap> ReadLine(i);
n 1 n

gap> ReadLine(i);
fail

gap> ReadAl1l(i);

gap> RewindStream(i);;
gap> ReadAl1(i);
"1Hallo\nYou\ni"

10.3.6 IsEndOfStream

> IsEndOfStream(input—stream) (operation)

IsEndOfStream returns true if the input stream is at end-of-stream, and false otherwise. Note
that IsEndOfStream might return false even if the next ReadByte (10.3.3) fails.

GAP - Reference Manual 146

10.3.7 PositionStream

> PositionStream(input-stream) (operation)
Some input streams, such as string streams and file streams attached to disk files, support a form

of random access by way of the operations PositionStream, SeekPositionStream (10.3.9) and

RewindStream (10.3.8). PositionStream returns a non-negative integer denoting the current posi-

tion in the stream (usually the number of characters before the next one to be read.

If this is not possible, for example for an input stream attached to standard input (normally the
keyboard), then fail is returned

10.3.8 RewindStream
> RewindStream(input-stream) (operation)
RewindStream attempts to return an input stream to its starting condition, so that all the same
characters can be read again. It returns true if the rewind succeeds and fail otherwise
A default method implements RewindStream using SeekPositionStream (10.3.9).
10.3.9 SeekPositionStream
> SeekPositionStream(input-stream, pos) (operation)

SeekPositionStream attempts to rewind or wind forward an input stream to the specified posi-
tion. This is not possible for all streams. It returns true if the seek is successful and fail otherwise.

10.4 Operations for QOutput Streams

10.4.1 WriteByte

> WriteByte(output-stream, byte) (operation)

writes the next character (given as integer) to the output stream output-stream. The function
returns true if the write succeeds and fail otherwise.

WriteByte is the basic operation for output streams. If a WriteByte method is installed for a
user-defined type of stream, then all the other output stream operations will work (although possibly
not at peak efficiency).

10.4.2 WriteLine

> WIiteLine(output—stream, string) (operation)

appends string to output-stream. A final newline is written. The function returns true if the
write succeeds and fail otherwise.

A default method is installed which implements WriteLine by repeated calls to WriteByte
(10.4.1).

GAP - Reference Manual 147

10.4.3 WriteAll

> WriteAll(output-stream, string) (operation)

appends string to output-stream. No final newline is written. The function returns true if
the write succeeds and fail otherwise. It will block as long as necessary for the write operation to
complete (for example for a child process to clear its input buffer)

A default method is installed which implements WriteAll by repeated calls to WriteByte
(10.4.1).

When printing or appending to a stream (using PrintTo (9.7.3), or AppendTo (9.7.3) or when
logging to a stream), the kernel generates a call to WriteAll for each line output.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> WriteByte(a,INT_CHAR(’H’));
true
gap> WriteLine(a,"allo");
true
gap> WriteAll(a,"You\n");
true

gap> CloseStream(a);
gap> Print(str);
Hallo

You

10.4.4 PrintTo and AppendTo (for streams)

> PrintTo(output-stream, argl, ...) (function)
> AppendTo(output-stream, argl, ...) (function)

These functions work like Print (6.3.4), except that the output is appended to the output stream
output-stream.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> AppendTo(a, (1,2,3), ":", Z(3));
gap> CloseStream(a);
gap> Print(str, "\n");
(1,2,3):2(3)
10.4.5 LogTo (for streams)
> LogTo(stream) (operation)

causes the subsequent interaction to be logged to the output stream stream. It works in precisely
the same way as it does for files (see LogTo (9.7.4)).

10.4.6 InputLogTo (for streams)

> InputLogTo(stream) (operation)

GAP - Reference Manual 148

causes the subsequent input to be logged to the output stream stream. It works just like it does
for files (see InputLogTo (9.7.5)).

10.4.7 OutputLogTo (for streams)

> OutputLogTo(stream) (operation)

causes the subsequent output to be logged to the output stream stream. It works just like it does
for files (see OutputLogTo (9.7.6)).

10.4.8 SetPrintFormattingStatus

> SetPrintFormattingStatus(stream, newstatus) (operation)
> PrintFormattingStatus(stream) (operation)

When text is being sent to an output text stream via PrintTo (9.7.3), AppendTo (9.7.3), LogTo
(10.4.5), etc., it is by default formatted just as it would be were it being printed to the screen. Thus,
it is broken into lines of reasonable length at (where possible) sensible places, lines containing el-
ements of lists or records are indented, and so forth. This is appropriate if the output is eventually
to be viewed by a human, and harmless if it to passed as input to GAP, but may be unhelpful if
the output is to be passed as input to another program. It is possible to turn off this behaviour for
a stream using the SetPrintFormattingStatus operation, and to test whether it is on or off using
PrintFormattingStatus.

SetPrintFormattingStatus sets whether output sent to the output stream stream via PrintTo
(9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation. If the second
argument newstatus is true then output will be so formatted, and if false then it will not. If the
stream is not a text stream, only false is allowed.

PrintFormattingStatus returns true if output sent to the output text stream stream via
PrintTo (9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation, and false
otherwise. For non-text streams, it returns false. If as argument stream the string "*stdout*" is
given, these functions refer to the formatting status of the standard output (so usually the users terminal
screen).

These functions do not influence the behaviour of the low level functions WriteByte (10.4.1),
WriteLine (10.4.2) or WriteAll (10.4.3) which always write without formatting.

Example
gap> s := "";; str := QutputTextString(s,false);;
gap> PrintTo(str,Primes{[1..30]});
gap> s;

"2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\
\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]"

gap> Print(s,"\n");

(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]

gap> SetPrintFormattingStatus(str, false);

gap> PrintTo(str,Primes{[1..30]1});

gap> s;

"[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\
\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 [2, 3, 5, 7\

, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, \

GAP - Reference Manual 149

79, 83, 89, 97, 101, 103, 107, 109, 113]"

gap> Print(s,"\n");

(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 I1[2, 3, 5, 7, 1\

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,\
83, 89, 97, 101, 103, 107, 109, 113]

10.5 File Streams

File streams are streams associated with files. An input file stream reads the characters it delivers from
a file, an output file stream prints the characters it receives to a file. The following functions can be
used to create such streams. They return fail if an error occurred, in this case LastSystemError
(9.1.1) can be used to get information about the error.

10.5.1 InputTextFile

> InputTextFile (filename) (operation)

InputTextFile(filename) returns an input stream in the category IsInputTextStream
(10.1.4) that delivers the characters from the file filename. If filename ends in .gz and the file
is a valid gzipped file, then the file will be transparently uncompressed.

10.5.2 OutputTextFile

> OutputTextFile(filename, append) (operation)

OutputTextFile(filename, append) returns an output stream in the category
IsOutputTextFile that writes received characters to the file filename. If append is false,
then the file is emptied first, otherwise received characters are added at the end of the file. If
filename ends in .gz then the file will be written with gzip compression.

Example
gap> # use a temporary directory
gap> name := Filename(DirectoryTemporary(), "test");;
gap> # create an output stream, append output, and close again
gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "Hallo\n", "You\n");
gap> CloseStream(output) ;
gap> # create an input, print complete contents of file, and close

gap> input := InputTextFile(name);;
gap> Print(ReadAll(input));

Hallo

You

gap> CloseStream(input);

gap> # append a single line

gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "AppendLine\n");

gap> # close output stream to flush the output

gap> CloseStream(output) ;

gap> # create an input, print complete contents of file, and close

GAP - Reference Manual 150

gap> input := InputTextFile(name);;
gap> Print(ReadAll(input));

Hallo

You

AppendLine

gap> CloseStream(input);

10.6 User Streams

The commands described in this section create streams which accept characters from, or deliver char-
acters to, the user, via the keyboard or the GAP session display.

10.6.1 InputTextUser

> InputTextUser () (function)

returns an input text stream which delivers characters typed by the user (or from the standard input
device if it has been redirected). In normal circumstances, characters are delivered one by one as they
are typed, without waiting until the end of a line. No prompts are printed.

10.6.2 OutputTextUser

> OutputTextUser () (function)

returns an output stream which delivers characters to the user’s display (or the standard output
device if it has been redirected). Each character is delivered immediately it is written, without waiting
for a full line of output. Text written in this way is not written to the session log (see LogTo (9.7.4)).

10.6.3 InputFromUser

> InputFromUser (arg) (function)

prints the arg as a prompt, then waits until a text is typed by the user (or from the standard input
device if it has been redirected). This text must be a single expression, followed by one enter. This is
evaluated (see EvalString (27.9.5)) and the result is returned.

10.7 String Streams

String streams are streams associated with strings. An input string stream reads the characters it
delivers from a string, an output string stream appends the characters it receives to a string. The
following functions can be used to create such streams.

10.7.1 InputTextString

> InputTextString(string) (operation)

GAP - Reference Manual 151

InputTextString(string) returns an input stream that delivers the characters from the string
string. The string is not changed when reading characters from it and changing the string after
the call to InputTextString has no influence on the input stream.

10.7.2 OutputTextString

> OutputTextString(list, append) (operation)

returns an output stream that puts all received characters into the list 1ist. If append is false,
then the list is emptied first, otherwise received characters are added at the end of the list.

Example

gap> # read input from a string

gap> input := InputTextString("Hallo\nYou\n");;
gap> ReadLine(input);

"Hallo\n"

gap> ReadLine(input);

"You\n"

gap> # print to a string

gap> str := "";;

gap> out := OutputTextString(str, true);;

gap> PrintTo(out, 1, "\n", (1,2,3,4)(5,6), "\n");
gap> CloseStream(out) ;

gap> Print(str);

1

(1,2,3,4) (5,6)

10.8 Input-Output Streams

Input-output streams capture bidirectional communications between GAP and another process, either
locally or (@as yet unimplemented @) remotely.

Such streams support the basic operations of both input and output streams. They should provide
some buffering, allowing output data to be written to the stream, even when input data is waiting to
be read, but the amount of this buffering is operating system dependent, and the user should take care
not to get too far ahead in writing, or behind in reading, or deadlock may occur.

At present the only type of Input-Output streams that are implemented provide communication
with a local child process, using a pseudo-tty.

Like other streams, write operations are blocking, read operations will block to get the first char-
acter, but not thereafter.

As far as possible, no translation is done on characters written to, or read from the stream, and no
control characters have special effects, but the details of particular pseudo-tty implementations may
effect this.

10.8.1 IsInputOutputStream

> IsInputOutputStream(obj) (Category)

IsInputOutputStream is the Category of Input-Output Streams; it returns true if the obj is an
input-output stream and false otherwise.

GAP - Reference Manual 152

10.8.2 InputOutputLocalProcess

> InputOutputLocalProcess(dir, executable, args) (function)

starts up a slave process, whose executable file is executable, with “command line” ar-
guments args in the directory dir. (Suitable choices for dir are DirectoryCurrent ()
or DirectoryTemporary() (see Section 9.3); DirectoryTemporary() may be a good
choice when executable generates output files that it doesn’t itself remove afterwards.)
InputOutputLocalProcess returns an InputOutputStream object. Bytes written to this stream are
received by the slave process as if typed at a terminal on standard input. Bytes written to standard
output by the slave process can be read from the stream.

When the stream is closed, the signal SIGTERM is delivered to the child process, which is ex-
pected to exit.

Example
gap> d := DirectoryCurrent();
dir("./")
gap> f := Filename(DirectoriesSystemPrograms(), "rev");
"/usr/bin/rev"

gap> s := InputOutputLocalProcess(d,f,[]);
< input/output stream to rev >

gap> WriteLine(s,"The cat sat on the mat");
true

gap> Print (ReadLine(s));

tam eht no tas tac ehT

gap> x := ListWithIdenticalEntries(10000,°x’);;
gap> ConvertToStringRep(x);

gap> WriteLine(s,x);

true

gap> WriteByte(s,INT_CHAR(’\n’));

true

gap> y := ReadAll(s);;

gap> Length(y);

4095

gap> CloseStream(s);

gap> s;

< closed input/output stream to rev >

10.8.3 ReadAllLine

> ReadAllLine(iostream[, nofail][, IsAllLine]) (operation)

For an input/output stream iostream ReadAllLine reads until a newline character if any input
is found or returns fail if no input is found, i.e. if any input is found ReadA11Line is non-blocking.

If the argument nofail (which must be false or true) is provided and it is set to true then
ReadAllLine will wait, if necessary, for input and never return fail.

If the argument IsA11Line (which must be a function that takes a string argument and returns
either true or false) then it is used to determine what constitutes a whole line. The default behaviour
is equivalent to passing the function

Example
line -> O < Length(line) and line[Length(line)] = ’\n’

GAP - Reference Manual 153

for the IsA11Line argument. The purpose of the IsAl11Line argument is to cater for the case
where the input being read is from an external process that writes a “prompt” for data that does not
terminate with a newline.

If the first argument is an input stream but not an input/output stream then ReadA11Line behaves
as if ReadLine (10.3.4) was called with just the first argument and any additional arguments are
ignored.

10.9 Dummy Streams

The following two commands create dummy streams which will consume all characters and never
deliver one.

10.9.1 InputTextNone

> InputTextNone() (function)

returns a dummy input text stream, which delivers no characters, i.e., it is always at end of stream.
Its main use is for calls to Process (11.1.1) when the started program does not read anything.

10.9.2 OutputTextNone

> OutputTextNone () (function)

returns a dummy output stream, which discards all received characters. Its main use is for calls to
Process (11.1.1) when the started program does not write anything.

10.10 Handling of Streams in the Background

This section describes a feature of the GAP kernel that can be used to handle pending streams some-
how “in the background”. This is only available on operating systems that have select.

Right before GAP reads a keypress from the keyboard it calls a little subroutine that can handle
streams that are ready to be read or ready to be written. This means that GAP can handle these streams
during user input on the command line. Note that this does not work when GAP is in the middle of
some calculation.

This feature is used in the following way. One can install handler functions for reading
or writing streams via InstallCharReadHookFunc (10.10.1). Handlers can be removed via
UnInstallCharReadHookFunc (10.10.2)

Note that handler functions must not return anything and get one integer argument, which refers
to an index in one of the following arrays (according to whether the function was installed for input,
output or exceptions on the stream). Handler functions usually should not output anything on the
standard output because this ruins the command line during command line editing.

10.10.1 InstallCharReadHookFunc

> InstallCharReadHookFunc(stream, mode, func) (function)

GAP - Reference Manual 154

installs the function func as a handler function for the stream stream. The argument mode
decides, for what operations on the stream this function is installed. mode must be a string, in which a
letter r means “read”, w means “write” and x means “exception”, according to the select function call
in the UNIX C-library (see man select and UNIXSelect (10.2.3)). More than one letter is allowed
in mode. As described above the function is called in a situation when GAP is reading a character
from the keyboard. Handler functions should not use much time to complete.

This functionality only works if the operating system has a select function.

10.10.2 UnlnstallCharReadHookFunc

> UnInstallCharReadHookFunc(stream, func) (function)

uninstalls the function func as a handler function for the stream stream. All instances are dein-
stalled, regardless of the mode of operation (read, write, exception).
This functionality only works if the operating system has a select function.

10.11 Comma separated files

In some situations it can be desirable to process data given in the form of a spreadsheet (such as Excel).
GAP can do this using the CSV (comma separated values) format, which spreadsheet programs can
usually read in or write out.

The first line of the spreadsheet is used as labels of record components, each subsequent line then
corresponds to a record. Entries enclosed in double quotes are considered as strings and are permitted
to contain the separation character (usually a comma).

10.11.1 ReadCSV

> ReadCSV(filename[, nohead] [, separator]) (function)

This function reads in a spreadsheet, saved in CSV format (comma separated values) and returns
its entries as a list of records. The entries of the first line of the spreadsheet are used to denote the
names of the record components. Blanks will be translated into underscore characters. If the parameter
nohead is given as true, instead the record components will be called fieldn. Each subsequent line
will create one record. If given, separator is the character used to separate fields. Otherwise it
defaults to a comma.

10.11.2 PrintCSV

> PrintCSV(filename, list[, fields]) (function)

This function prints a list of records as a spreadsheet in CSV format (which can be read in for
example into Excel). The names of the record components will be printed as entries in the first line. If
the argument fields is given only the record fields listed in this list will be printed and they will be
printed in the same arrangement as given in this list. If the option noheader is set to true the line with
the record field names will not be printed.

Chapter 11

Processes

GAP can call other programs, such programs are called processes. There are two kinds of processes:
first there are processes that are started, run and return a result, while GAP is suspended until the
process terminates. Then there are processes that will run in parallel to GAP as subprocesses and
GAP can communicate and control the processes using streams (see InputOutputLocalProcess
(10.8.2)).

11.1 Process and Exec

11.1.1 Process

> Process(dir, prg, stream-in, stream-out, options) (operation)

Process runs a new process and returns when the process terminates. It returns the return value
of the process if the operating system supports such a concept.

The first argument dir is a directory object (see 9.3) which will be the current directory (in the
usual UNIX or MSDOS sense) when the program is run. This will only matter if the program accesses
files (including running other programs) via relative path names. In particular, it has nothing to do
with finding the binary to run.

In general the directory will either be the current directory, which is returned by
DirectoryCurrent (9.3.4) —this was the behaviour of GAP 3- or a temporary directory returned
by DirectoryTemporary (9.3.3). If one expects that the process creates temporary or log files the
latter should be used because GAP will attempt to remove these directories together with all the files
in them when quitting.

If a program of a GAP package which does not only consist of GAP code needs to be launched
in a directory relative to certain data libraries, then the first entry of DirectoriesPackageLibrary
(76.3.7) should be used. The argument of DirectoriesPackageLibrary (76.3.7) should be the path
to the data library relative to the package directory.

If a program calls other programs and needs to be launched in a directory containing the executa-
bles for such a GAP package then the first entry of DirectoriesPackagePrograms (76.3.8) should
be used.

The latter two alternatives should only be used if absolutely necessary because otherwise one risks
accumulating log or core files in the package directory.

155

GAP - Reference Manual 156

Example
gap> path := DirectoriesSystemPrograms();;
gap> 1ls := Filename(path, "1s");;

gap> stdin := InputTextUser();;

gap> stdout := OutputTextUser();;

gap> Process(path[1], 1ls, stdin, stdout, ["-c"]);;

awk 1s mkdir

gap> # current directory, here the root directory

gap> Process(DirectoryCurrent(), 1s, stdin, stdout, ["-c"]);;
bin 1ib trans tst CVs grp prim thr two
src dev etc tbl doc pkg small tom

gap> # create a temporary directory

gap> tmpdir := DirectoryTemporary();;

gap> Process(tmpdir, ls, stdin, stdout, ["-c"]);;

gap> PrintTo(Filename(tmpdir, "emil"));

gap> Process(tmpdir, ls, stdin, stdout, ["-c"]);;

emil

prg is the filename of the program to launch, for portability it should be the result of Filename
(9.4.1) and should pass IsExecutableFile (9.6.4). Note that Process does no searching through a
list of directories, this is done by Filename (9.4.1).

stream-in is the input stream that delivers the characters to the process. For portability it should
either be InputTextNone (10.9.1) (if the process reads no characters), InputTextUser (10.6.1), the
result of a call to InputTextFile (10.5.1) from which no characters have been read, or the result of
a call to InputTextString (10.7.1).

Process is free to consume all the input even if the program itself does not require any input at
all.

stream-out is the output stream which receives the characters from the process. For portability
it should either be OutputTextNone (10.9.2) (if the process writes no characters), OutputTextUser
(10.6.2), the result of a call to OutputTextFile (10.5.2) to which no characters have been written, or
the result of a call to QutputTextString (10.7.2).

options is a list of strings which are passed to the process as command line argument. Note
that no substitutions are performed on the strings, i.e., they are passed immediately to the process and
are not processed by a command interpreter (shell). Further note that each string is passed as one
argument, even if it contains space characters. Note that input/output redirection commands are not
allowed as options.

In order to find a system program use DirectoriesSystemPrograms (9.3.6) together with
Filename (9.4.1).

Example
gap> path := DirectoriesSystemPrograms();;
gap> date := Filename(path, "date");
"/bin/date"

The next example shows how to execute date with no argument and no input, and collect the
output into a string stream.

Example
gap> str := "";; a := OutputTextString(str,true);;

gap> Process(DirectoryCurrent(), date, InputTextNone(), a, [1);
0

GAP - Reference Manual 157

gap> CloseStream(a);
gap> Print(str);
Fri Jul 11 09:04:23 MET DST 1997

11.1.2 Exec

> Exec(cmd, optionl, ..., optionN) (function)

Exec runs a shell in the current directory to execute the command given by the string cmd with
options optionl, ..., optionN.

Example
gap> Exec("date");
Thu Jul 24 10:04:13 BST 1997

cmd is interpreted by the shell and therefore we can make use of the various features that a shell
offers as in following example.

Example
gap> Exec("echo \"GAP is great!\" > foo");
gap> Exec("cat foo");

GAP is great!

gap> Exec("rm foo");

Exec calls the more general operation Process (11.1.1). The function Edit (6.10.1) should be
used to call an editor from within GAP.

Chapter 12

Objects and Elements

An object is anything in GAP that can be assigned to a variable, so nearly everything in GAP is an
object.

Different objects can be regarded as equal with respect to the equivalence relation
we say that the objects describe the same element.

_9

, in this case

12.1 Objects

Nearly all things one deals with in GAP are objects. For example, an integer is an object, as is a
list of integers, a matrix, a permutation, a function, a list of functions, a record, a group, a coset or a
conjugacy class in a group.

Examples of things that are not objects are comments which are only lexical constructs, while
loops which are only syntactical constructs, and expressions, such as 1 + 1; but note that the value of
an expression, in this case the integer 2, is an object.

Objects can be assigned to variables, and everything that can be assigned to a variable is an object.
Analogously, objects can be used as arguments of functions, and can be returned by functions.

12.1.1 IsObject

> ISUbj ect (Obj) (Category)

IsObject returns true if the object obj is an object. Obviously it can never return false.
It can be used as a filter in InstallMethod (78.2.1) when one of the arguments can be anything.

12.2 Elements as equivalence classes

“__s

The equality operation “=" defines an equivalence relation on all GAP objects. The equivalence classes
are called elements.

There are basically three reasons to regard different objects as equal. Firstly the same information
may be stored in different places. Secondly the same information may be stored in different ways;
for example, a polynomial can be stored sparsely or densely. Thirdly different information may be
equal modulo a mathematical equivalence relation. For example, in a finitely presented group with the

relation a® = 1 the different objects a and a® describe the same element.

158

GAP - Reference Manual 159

As an example of all three reasons, consider the possibility of storing an integer in several places
of the memory, of representing it as a fraction with denominator 1, or of representing it as a fraction
with any denominator, and numerator a suitable multiple of the denominator.

12.3 Sets

In GAP there is no category whose definition corresponds to the mathematical property of being a
set, however in the manual we will often refer to an object as a set in order to convey the fact that
mathematically, we are thinking of it as a set. In particular, two sets A and B are equal if and only if,
X€EA < x€B.

There are two types of object in GAP which exhibit this kind of behaviour with respect to equality,
namely domains (see Section 12.4) and lists whose elements are strictly sorted see IsSSortedList
(21.17.4). In general, set in this manual will mean an object of one of these types.

More precisely: two domains can be compared with “{=}", the answer being true if and only if
the sets of elements are equal (regardless of any additional structure) and; a domain and a list can be
compared with “=", the answer being true if and only if the list is equal to the strictly sorted list of
elements of the domain.

A discussion about sorted lists and sets can be found in Section 21.19.

12.4 Domains

An especially important class of objects in GAP are those whose underlying mathematical abstraction
is that of a structured set, for example a group, a conjugacy class, or a vector space. Such objects are
called domains. The equality relation between domains is always equality as sets, so that two domains
are equal if and only if they contain the same elements.

Domains play a central role in GAP. In a sense, the only reason that GAP supports objects such
as integers and permutations is the wish to form domains of them and compute the properties of those
domains.

Domains are described in Chapter 31.

12.5 Identical Objects

Two objects that are equal as objects (that is they actually refer to the same area of computer memory)
and not only w.r.t. the equality relation “=" are called identical. Identical objects do of course describe
the same element.

12.5.1 IsldenticalObj

> IsIdenticalObj(objl, obj2) (function)

IsIdenticalObj tests whether the objects obj1 and obj2 are identical (that is they are either
equal immediate objects or are both stored at the same location in memory.

If two copies of a simple constant object (see section 12.6) are created, it is not defined whether
GAP will actually store two equal but non-identical objects, or just a single object. For mutable
objects, however, it is important to know whether two values refer to identical or non-identical objects,

GAP - Reference Manual 160

and the documentation of operations that return mutable values should make clear whether the values
returned are new, or may be identical to values stored elsewhere.

Example
gap> IsIdenticalObj(1076, 1076);
true
gap> IsIdenticalObj(10°30, 10°30);
false
gap> IsIdenticalObj(true, true);
true

Generally, one may compute with objects but think of the results in terms of the underlying el-
ements because one is not interested in locations in memory, data formats or information beyond
underlying equivalence relations. But there are cases where it is important to distinguish the relations
identity and equality. This is best illustrated with an example. (The reader who is not familiar with
lists in GAP, in particular element access and assignment, is referred to Chapter 21.)

Example

gap> 11:= [1, 2, 3];; 12:= [1, 2, 3 1;;
gap> 11 = 12;

true

gap> IsIdenticalObj(11, 12);

false

gap> 11[3]:= 4;; 11; 12;

[1, 2, 4]

[1, 2, 3]

gap> 11 = 12;

false

The two lists 11 and 12 are equal but not identical. Thus a change in 11 does not affect 12.

Example
gap> 11:= [1, 2, 3 1;; 12:= 11;;
gap> 11 = 12;
true
gap> IsIdenticalObj(11, 12);
true
gap> 11[3]:= 4;; 11; 12;
[1, 2, 4]
[1, 2, 4]
gap> 11 = 12;
true

Here, 11 and 12 are identical objects, so changing 11 means a change to 12 as well.

12.5.2 IsNotldenticalObj

> IsNotIdenticalObj(objl, obj2) (function)

tests whether the objects obj1 and obj2 are not identical.

GAP - Reference Manual 161

12.6 Mutability and Copyability

An object in GAP is said to be immutable if its mathematical value (as defined by =) does not change
under any operation. More explicitly, suppose a is immutable and O is some operation on a, then if
a = b evaluates to true before executing O(a), a = b also evaluates to true afterwards. (Examples
for operations O that change mutable objects are Add (21.4.2) and Unbind (21.5.3) which are used
to change list objects, see Chapter 21.) An immutable object may change, for example to store new
information, or to adopt a more efficient representation, but this does not affect its behaviour under =.

There are two points here to note. Firstly, “operation” above refers to the functions and methods
which can legitimately be applied to the object, and not the ! . operation whereby virtually any aspect
of any GAP level object may be changed. The second point which follows from this, is that when
implementing new types of objects, it is the programmer’s responsibility to ensure that the functions
and methods they write never change immutable objects mathematically.

In fact, most objects with which one deals in GAP are immutable. For instance, the permutation
(1,2) will never become a different permutation or a non-permutation (although a variable which
previously had (1,2) stored in it may subsequently have some other value).

For many purposes, however, mutable objects are useful. These objects may be changed to rep-
resent different mathematical objects during their life. For example, mutable lists can be changed by
assigning values to positions or by unbinding values at certain positions. Similarly, one can assign
values to components of a mutable record, or unbind them.

12.6.1 IsCopyable

> IsCopyable(obj) (Category)

If a mutable form of an object obj can be made in GAP, the object is called copyable. Examples
of copyable objects are of course lists and records. A new mutable version of the object can always be
obtained by the operation ShallowCopy (12.7.1).

Objects for which only an immutable form exists in GAP are called constants. Examples of
constants are integers, permutations, and domains. Called with a constant as argument, Immutable
(12.6.3) and ShallowCopy (12.7.1) return this argument.

12.6.2 IsMutable

> IsMutable(obj) (Category)

tests whether obj is mutable.

If an object is mutable then it is also copyable (see IsCopyable (12.6.1)), and a ShallowCopy
(12.7.1) method should be supplied for it. Note that IsMutable must not be implied by another filter,
since otherwise Immutable (12.6.3) would be able to create paradoxical objects in the sense that
IsMutable for such an object is false but the filter that implies IsMutable is true.

In many situations, however, one wants to ensure that objects are immutable. For example, take the
identity of a matrix group. Since this matrix may be referred to as the identity of the group in several
places, it would be fatal to modify its entries, or add or unbind rows. We can obtain an immutable
copy of an object with Immutable (12.6.3).

GAP - Reference Manual 162

12.6.3 Immutable

> Immutable(obj) (function)

returns an immutable structural copy (see StructuralCopy (12.7.2)) of obj in which the sub-
objects are immutable copies of the subobjects of obj. If obj is immutable then Immutable returns
obj itself.

GAP will complain with an error if one tries to change an immutable object.

12.6.4 Makelmmutable

> MakeImmutable(obj) (function)

One can turn the (mutable or immutable) object obj into an immutable one with MakeImmutable;
note that this also makes all subobjects of obj immutable, so one should call MakeImmutable only if
obj and its mutable subobjects are newly created. If one is not sure about this, Immutable (12.6.3)
should be used.

Note that it is not possible to turn an immutable object into a mutable one; only mutable copies
can be made (see 12.7).

Using Immutable (12.6.3), it is possible to store an immutable identity matrix or an immutable
list of generators, and to pass around references to this immutable object safely. Only when a mutable
copy is really needed does the actual object have to be duplicated. Compared to the situation without
immutable objects, much unnecessary copying is avoided this way. Another advantage of immutability
is that lists of immutable objects may remember whether they are sorted (see 21.19), which is not
possible for lists of mutable objects.

Since the operation Immutable (12.6.3) must work for any object in GAP, it follows that an
immutable form of every object must be possible, even if it is not sensible, and user-defined objects
must allow for the possibility of becoming immutable without notice.

12.6.5 Mutability of Iterators

An interesting example of mutable (and thus copyable) objects is provided by iterators, see 30.8. (Of
course an immutable form of an iterator is not very useful, but clearly Immutable (12.6.3) will yield
such an object.) Every call of NextIterator (30.8.5) changes a mutable iterator until it is exhausted,
and this is the only way to change an iterator. ShallowCopy (12.7.1) for an iterator iter is defined
SO as to return a mutable iterator that has no mutable data in common with iter, and that behaves
equally to iter w.r.t. IsDonelterator (30.8.4) and (if iter is mutable) NextIterator (30.8.5).
Note that this meaning of the “shallow copy” of an iterator that is returned by ShallowCopy (12.7.1)
is not as obvious as for lists and records, and must be explicitly defined.

12.6.6 Mutability of Results of Arithmetic Operations

Many operations return immutable results, among those in particular attributes (see 13.5). Exam-
ples of attributes are Size (30.4.6), Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), and
Inverse (31.10.8). Arithmetic operations, such as the binary infix operations +, -, *, /, ~, mod, the
unary -, and operations such as Comm (31.12.3) and LeftQuotient (31.12.2), return mutable results,
except if all arguments are immutable. So the product of two matrices or of a vector and a matrix
is immutable if and only if the two matrices or both the vector and the matrix are immutable (see

GAP - Reference Manual 163

also 21.11). There is one exception to this rule, which arises where the result is less deeply nested
than at least one of the argument, where mutable arguments may sometimes lead to an immutable
result. For instance, a mutable matrix with immutable rows, multiplied by an immutable vector gives
an immutable vector result. The exact rules are given in 21.11.

It should be noted that O * obj is equivalent to ZeroSM(obj), -obj is equivalent to
AdditiveInverseSM(obj), obj~0 is equivalent to OneSM(obj), and obj~-1 is equivalent to
InverseSM(obj). The “SM” stands for “same mutability”, and indicates that the result is mutable
if and only if the argument is mutable.

The operations ZeroOp (31.10.3), AdditiveInverseOp (31.10.9), OneOp (31.10.2), and
InverseOp (31.10.8) return mutable results whenever a mutable version of the result exists, contrary
to the attributes Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), and Inverse (31.10.8).

If one introduces new arithmetic objects then one need not install methods for the attributes One
(31.10.2), Zero (31.10.3), etc. The methods for the associated operations OneOp (31.10.2) and ZeroQp
(31.10.3) will be called, and then the results made immutable.

All methods installed for the arithmetic operations must obey the rule about the mutability of the
result. This means that one may try to avoid the perhaps expensive creation of a new object if both
operands are immutable, and of course no problems of this kind arise at all in the (usual) case that the
objects in question do not admit a mutable form, i.e., that these objects are not copyable.

In a few, relatively low-level algorithms, one wishes to treat a matrix partly as a data structure,
and manipulate and change its entries. For this, the matrix needs to be mutable, and the rule that
attribute values are immutable is an obstacle. For these situations, a number of additional operations
are provided, for example TransposedMatMutable (24.5.6) constructs a mutable matrix (contrary to
the attribute TransposedMat (24.5.6)), while TriangulizeMat (24.7.3) modifies a mutable matrix
(in place) into upper triangular form.

Note that being immutable does not forbid an object to store knowledge. For example, if it is
found out that an immutable list is strictly sorted then the list may store this information. More
precisely, an immutable object may change in any way, provided that it continues to represent the
same mathematical object.

12.7 Duplication of Objects

12.7.1 ShallowCopy

> ShallowCopy (Obj) (operation)

ShallowCopy returns a new mutable object equal to its argument, if this is possible. The subob-
jects of ShallowCopy (obj) are identical to the subobjects of obj.

If GAP does not support a mutable form of the immutable object obj (see 12.6) then
ShallowCopy returns obj itself.

Since ShallowCopy is an operation, the concrete meaning of “subobject” depends on the type of
obj. But for any copyable object obj, the definition should reflect the idea of “first level copying”.

The definition of ShallowCopy for lists (in particular for matrices) can be found in 21.7.

12.7.2 StructuralCopy

> StructuralCopy(obj) (function)

GAP - Reference Manual 164

In a few situations, one wants to make a structural copy scp of an object obj. This is defined as
follows. scp and obj are identical if obj is immutable. Otherwise, scp is a mutable copy of obj such
that each subobject of scp is a structural copy of the corresponding subobject of obj. Furthermore, if
two subobjects of obj are identical then also the corresponding subobjects of scp are identical.
Example

gap> obj:= [[0, 11 1;;

gap> obj[2]:= obj[1];;

gap> obj[3]:= Immutable(objl[1]);;
gap> scp:= StructuralCopy(obj);;
gap> scp = obj; IsIdenticalObj(scp, obj);
true

false

gap> IsIdenticalObj(scp[1], obj[1]);
false

gap> IsIdenticalObj(scpl[3], obj[3]);
true

gap> IsIdenticalObj(scpl[1], scp[2]);
true

That both ShallowCopy (12.7.1) and StructuralCopy return the argument obj itself if it is not
copyable is consistent with this definition, since there is no way to change obj by modifying the result
of any of the two functions, because in fact there is no way to change this result at all.

12.8 Other Operations Applicable to any Object

There are a number of general operations which can be applied, in principle, to any object in GAP.
Some of these are documented elsewhere —see String (27.7.6), PrintObj (6.3.5) and Display
(6.3.6). Others are mainly somewhat technical.

12.8.1 SetName

> SetName (Obj , name) (operation)

for a suitable object obj sets that object to have name name (a string).

12.8.2 Name

> Name (Ob_j) (attribute)

returns the name, a string, previously assigned to obj via a call to SetName (12.8.1). The name of
an object is used only for viewing the object via this name.

There are no methods installed for computing names of objects, but the name may be set for
suitable objects, using SetName (12.8.1).
Example
gap> R := PolynomialRing(Integers,2);
Integers([x_1,x_2]
gap> SetName(R,"Z[x,y]");
gap> R;
Z[x,y]

GAP - Reference Manual 165

gap> Name (R);
"Z[X,y] [

12.8.3 InfoText

> InfoText(obj) (attribute)

is a mutable string with information about the object obj. There is no default method to create an
info text.

12.8.4 IsInternallyConsistent

> IsInternallyConsistent(obj) (operation)

For debugging purposes, it may be useful to check the consistency of an object obj that is com-
posed from other (composed) objects.

There is a default method of IsInternallyConsistent, with rank zero, that returns true.
So it is possible (and recommended) to check the consistency of subobjects of obj recursively by
IsInternallyConsistent.

(Note that IsInternallyConsistent is not an attribute.)

12.8.5 MemoryUsage

> MemoryUsage (obj) (function)

Returns the amount of memory in bytes used by the object obj and its subobjects. Note that in
general, objects can reference each other in very difficult ways such that determining the memory
usage is a recursive procedure. In particular, computing the memory usage of a complicated structure
itself uses some additional memory, which is however no longer used after completion of this oper-
ation. This procedure descends into lists and records, positional and component objects; however it
deliberately does not take into account the type and family objects. For functions, it only takes the
memory usage of the function body, not of the local context the function was created in, although the
function keeps a reference to that as well.

Chapter 13

Types of Objects

Every GAP object has a type. The type of an object is the information which is used to decide
whether an operation is admissible or possible with that object as an argument, and if so, how it is to
be performed (see Chapter 78).

For example, the types determine whether two objects can be multiplied and what function is
called to compute the product. Analogously, the type of an object determines whether and how the
size of the object can be computed. It is sometimes useful in discussing the type system, to identify
types with the set of objects that have this type. Partial types can then also be regarded as sets, such
that any type is the intersection of its parts.

The type of an object consists of two main parts, which describe different aspects of the object.

The family determines the relation of the object to other objects. For example, all permutations
form a family. Another family consists of all collections of permutations, this family contains the set
of permutation groups as a subset. A third family consists of all rational functions with coefficients in
a certain family.

The other part of a type is a collection of filters (actually stored as a bit-list indicating, from the
complete set of possible filters, which are included in this particular type). These filters are all treated
equally by the method selection, but, from the viewpoint of their creation and use, they can be divided
(with a small number of unimportant exceptions) into categories, representations, attribute testers and
properties. Each of these is described in more detail below.

This chapter does not describe how types and their constituent parts can be created. Information
about this topic can be found in Chapter 79.

Note: Detailed understanding of the type system is not required to use GAP. It can be helpful,
however, to understand how things work and why GAP behaves the way it does.

A discussion of the type system can be found in [BL98§].

13.1 Families

The family of an object determines its relationship to other objects.

More precisely, the families form a partition of all GAP objects such that the following two con-
ditions hold: objects that are equal w.r.t. = lie in the same family; and the family of the result of an
operation depends only on the families of its operands.

The first condition means that a family can be regarded as a set of elements instead of a set of
objects. Note that this does not hold for categories and representations (see below), two objects that
are equal w.r.t. = need not lie in the same categories and representations. For example, a sparsely

166

GAP - Reference Manual 167

represented matrix can be equal to a densely represented matrix. Similarly, each domain is equal w.r.t.
= to the sorted list of its elements, but a domain is not a list, and a list is not a domain.

13.1.1 FamilyObj

> Fami 1y0bj (Obj) (function)

returns the family of the object obj.

The family of the object obj is itself an object, its family is FamilyO0fFamilies.

It should be emphasized that families may be created when they are needed. For example, the
family of elements of a finitely presented group is created only after the presentation has been con-
structed. Thus families are the dynamic part of the type system, that is, the part that is not fixed after
the initialisation of GAP.

Families can be parametrized. For example, the elements of each finitely presented group form
a family of their own. Here the family of elements and the finitely presented group coincide when
viewed as sets. Note that elements in different finitely presented groups lie in different families. This
distinction allows GAP to forbid multiplications of elements in different finitely presented groups.

As a special case, families can be parametrized by other families. An important example is the
family of collections that can be formed for each family. A collection consists of objects that lie in the
same family, it is either a nonempty dense list of objects from the same family or a domain.

Note that every domain is a collection, that is, it is not possible to construct domains whose
elements lie in different families. For example, a polynomial ring over the rationals cannot contain
the integer O because the family that contains the integers does not contain polynomials. So one has
to distinguish the integer zero from each zero polynomial.

Let us look at this example from a different viewpoint. A polynomial ring and its coefficients
ring lie in different families, hence the coefficients ring cannot be embedded “naturally” into the
polynomial ring in the sense that it is a subset. But it is possible to allow, e.g., the multiplication of an
integer and a polynomial over the integers. The relation between the arguments, namely that one is a
coefficient and the other a polynomial, can be detected from the relation of their families. Moreover,
this analysis is easier than in a situation where the rationals would lie in one family together with
all polynomials over the rationals, because then the relation of families would not distinguish the
multiplication of two polynomials, the multiplication of two coefficients, and the multiplication of a
coefficient with a polynomial. So the wish to describe relations between elements can be taken as a
motivation for the introduction of families.

13.2 Filters

A filter is a special unary GAP function that returns either true or false, depending on whether or
not the argument lies in the set defined by the filter. Filters are used to express different aspects of
information about a GAP object, which are described below (see 13.3, 13.4, 13.5, 13.6, 13.7, 13.8).

Presently any filter in GAP is implemented as a function which corresponds to a set of positions in
the bitlist which forms part of the type of each GAP object, and returns true if and only if the bitlist
of the type of the argument has the value true at all of these positions.

The intersection (or meet) of two filters filt1, fil1t2 is again a filter, it can be formed as

filtl and filt2

See 20.4 for more details.

GAP - Reference Manual 168

For example, IsList and IsEmpty is a filter that returns true if its argument is an empty
list, and false otherwise. The filter IsGroup (39.2.7) is defined as the intersection of the category
IsMagmaWithInverses (35.1.4) and the property IsAssociative (35.4.7).

A filter that is not the meet of other filters is called a simple filter. For example, each attribute
tester (see 13.6) is a simple filter. Each simple filter corresponds to a position in the bitlist currently
used as part of the data structure representing a type.

Every filter has a rank, which is used to define a ranking of the methods installed for an operation,
see Section 78.2. The rank of a filter can be accessed with RankFilter (13.2.1).

13.2.1 RankFilter

> RankFilter(filt) (function)

For simple filters, an incremental rank is defined when the filter is created, see the sections about
the creation of filters: 79.1, 79.2, 79.3, 79.4. For an arbitrary filter, its rank is given by the sum of
the incremental ranks of the involved simple filters; in addition to the implied filters, these are also the
required filters of attributes (again see the sections about the creation of filters). In other words, for the
purpose of computing the rank and only for this purpose, attribute testers are treated as if they would
imply the requirements of their attributes.

13.2.2 NamesFilter

> NamesFilter(filt) (function)

NamesFilter returns a list of names of the implied simple filters of the filter filt, these are all
those simple filters imp such that every object in filt also lies in imp. For implications between
filters, see ShowImpliedFilters (13.2.3) as well as sections 78.7, 79.1, 79.2, 79.3.

13.2.3 ShowImpliedFilters

> ShowImpliedFilters(filter) (function)

Displays information about the filters that may be implied by filter. They are given by their
names. ShowImpliedFilters first displays the names of all filters that are unconditionally implied
by filter. It then displays implications that require further filters to be present (indicating by + the
required further filters).

Example
gap> ShowImpliedFilters(IsNilpotentGroup) ;
Implies:

IsListOrCollection

IsCollection

IsDuplicateFree

IsExtLElement

CategoryCollections (IsExtLElement)

IsExtRElement

CategoryCollections (IsExtRElement)

CategoryCollections(IsMultiplicativeElement)

CategoryCollections(IsMultiplicativeElementWithOne)

CategoryCollections(IsMultiplicativeElementWithInverse)

GAP - Reference Manual 169

IsGeneralizedDomain

IsMagma

IsMagmaWithOne
IsMagmaWithInversesIfNonzero
IsMagmaWithInverses
IsAssociative
HasMultiplicativeNeutralElement
IsGenerators0fSemigroup
IsSimpleSemigroup
IsRegularSemigroup
IsInverseSemigroup
IsCompletelyRegularSemigroup
IsGroupAsSemigroup
IsMonoidAsSemigroup
IsOrthodoxSemigroup
IsSupersolvableGroup
IsSolvableGroup
IsNilpotentByFinite

May imply with:
+IsFinitelyGeneratedGroup
IsPolycyclicGroup

13.2.4 FiltersType

> FiltersType(type) (operation)
> FiltersObj (object) (operation)

returns a list of the filters in the type type, or in the type of the object object respectively.
Example

gap> FiltersObj(fail);

[<Category "IsBool">, <Representation "IsInternalRep">]

gap> FiltersType(TypeOfTypes) ;

[<Representation "IsPositionalObjectRep">, <Category "IsType">, <Representation

13.3 Categories

The categories of an object are filters (see 13.2) that determine what operations an object admits. For
example, all integers form a category, all rationals form a category, and all rational functions form
a category. An object which claims to lie in a certain category is accepting the requirement that it
should have methods for certain operations (and perhaps that their behaviour should satisfy certain
axioms). For example, an object lying in the category IsList (21.1.1) must have methods for Length

(21.17.5), IsBound\ [\] (21.2.1) and the list element access operation \ [\] (21.2.1).

An object can lie in several categories. For example, a row vector lies in the categories IsList

(21.1.1) and IsVector (31.14.14); each list lies in the category IsCopyable (12.6.1), and depending
on whether or not it is mutable, it may lie in the category IsMutable (12.6.2). Every domain lies in

the category IsDomain (31.9.1).

IsTypeDefaultRe

GAP - Reference Manual 170

Of course some categories of a mutable object may change when the object is changed. For
example, after assigning values to positions of a mutable non-dense list, this list may become part of
the category IsDenseList (21.1.2).

However, if an object is immutable then the set of categories it lies in is fixed.

All categories in the library are created during initialization, in particular they are not created
dynamically at runtime.

The following list gives an overview of important categories of arithmetic objects. Indented cate-

gories are to be understood as subcategories of the non indented category listed above it.
Example

IsObject
IsExtLElement
IsExtRElement
IsMultiplicativeElement
IsMultiplicativeElementWithOne
IsMultiplicativeElementWithInverse
IsExtAElement
IsAdditiveElement
IsAdditiveElementWithZero
IsAdditiveElementWithInverse

Every object lies in the category IsObject (12.1.1).

The categories IsExtLElement (31.14.8) and IsExtRElement (31.14.9) contain objects that can
be multiplied with other objects via * from the left and from the right, respectively. These categories
are required for the operands of the operation *.

The category IsMultiplicativeElement (31.14.10) contains objects that can
be multiplied from the left and from the right with objects from the same fam-
ily. IsMultiplicativeElementWithOne (31.14.11) contains objects obj for which
a multiplicatively neutral element can be obtained by taking the O-th power obj~0.
IsMultiplicativeElementWithInverse (31.14.13) contains objects obj for which a multi-
plicative inverse can be obtained by forming obj~-1.

Likewise, the categories IsExtAElement (31.14.1), IsAdditiveElement (31.14.3),
IsAdditiveElementWithZero (31.14.5) and IsAdditiveElementWithInverse (31.14.7)
contain objects that can be added via + to other objects, objects that can be added to objects of the
same family, objects for which an additively neutral element can be obtained by multiplication with
zero, and objects for which an additive inverse can be obtained by multiplication with -1.

So a vector lies in IsExtLElement (31.14.8), IsExtRElement (31.14.9) and
IsAdditiveElementWithInverse (31.14.7). A ring element must additionally lie in
IsMultiplicativeElement (31.14.10).

As stated above it is not guaranteed by the categories of objects whether the result of an opera-
tion with these objects as arguments is defined. For example, the category IsMatrix (24.2.1) is a
subcategory of IsMultiplicativeElementWithInverse (31.14.13). Clearly not every matrix has a
multiplicative inverse. But the category IsMatrix (24.2.1) makes each matrix an admissible argument
of the operation Inverse (31.10.8), which may sometimes return fail. Likewise, two matrices can
be multiplied only if they are of appropriate shapes.

Analogous to the categories of arithmetic elements, there are categories of domains of these ele-
ments.

Example
IsObject
IsDomain

GAP - Reference Manual 171

IsMagma
IsMagmaWithOne
IsMagmaWithInversesIfNonzero
IsMagmaWithInverses
IsAdditiveMagma
IsAdditiveMagmaWithZero
IsAdditiveMagmaWithInverses
IsExtLSet
IsExtRSet

Of course IsDomain (31.9.1) is a subcategory of IsObject (12.1.1). A domain that is closed under
multiplication * is called a magma and it lies in the category IsMagma (35.1.1). If a magma is closed
under taking the identity, it lies in IsMagmaWithOne (35.1.2), and if it is also closed under taking
inverses, it lies in IsMagmaWithInverses (35.1.4). The category IsMagmaWithInversesIfNonzero
(35.1.3) denotes closure under taking inverses only for nonzero elements, every division ring lies in
this category.

Note that every set of categories constitutes its own notion of generation, for example a group may
be generated as a magma with inverses by some elements, but to generate it as a magma with one it
may be necessary to take the union of these generators and their inverses.

13.3.1 CategoriesOfObject

> CategoriesOfObject(object) (operation)

returns a list of the names of the categories in which object lies.
Example

gap> g:=Group((1,2),(1,2,3));;

gap> CategoriesOfObject(g);

["IsListOrCollection", "IsCollection", "IsExtLElement",
"CategoryCollections (IsExtLElement)", "IsExtRElement",
"CategoryCollections (IsExtRElement)",
"CategoryCollections(IsMultiplicativeElement)",
"CategoryCollections(IsMultiplicativeElementWithOne)",
"CategoryCollections(IsMultiplicativeElementWithInverse)",
"CategoryCollections(IsAssociativeElement)",

"CategoryCollections(IsFiniteOrderElement)", "IsGeneralizedDomain",
"CategoryCollections(IsPerm)", "IsMagma", "IsMagmaWithOne",
"IsMagmaWithInversesIfNonzero", "IsMagmaWithInverses"]

13.4 Representation

The representation of an object is a set of filters (see 13.2) that determines how an object is actually
represented. For example, a matrix or a polynomial can be stored sparsely or densely; all dense poly-
nomials form a representation. An object which claims to lie in a certain representation is accepting
the requirement that certain fields in the data structure be present and have specified meanings.

GAP distinguishes four essentially different ways to represent objects. First there are the represen-
tations IsInternalRep for internal objects such as integers and permutations, and IsDataObjectRep
for other objects that are created and whose data are accessible only by kernel functions. The data
structures underlying such objects cannot be manipulated at the GAP level.

GAP - Reference Manual 172

All other objects are either in the representation IsComponentObjectRep or in the representation
IsPositionalObjectRep, see 79.10 and 79.11.

An object can belong to several representations in the sense that it lies in several subrepresentations
of IsComponentObjectRep or of IsPositionalObjectRep. The representations to which an object
belongs should form a chain and either two representations are disjoint or one is contained in the
other. So the subrepresentations of IsComponentObjectRep and IsPositionalObjectRep each
form trees. In the language of Object Oriented Programming, we support only single inheritance for
representations.

These trees are typically rather shallow, since for one representation to be contained in another
implies that all the components of the data structure implied by the containing representation, are
present in, and have the same meaning in, the smaller representation (whose data structure presumably
contains some additional components).

Objects may change their representation, for example a mutable list of characters can be converted
into a string.

All representations in the library are created during initialization, in particular they are not created
dynamically at runtime.

Examples of subrepresentations of IsPositionalObjectRep are IsModulusRep, which is used
for residue classes in the ring of integers, and IsDenseCoeffVectorRep, which is used for elements
of algebras that are defined by structure constants.

An important subrepresentation of IsComponent0ObjectRepis IsAttributeStoringRep, which
is used for many domains and some other objects. It provides automatic storing of all attribute values
(see below).

13.4.1 RepresentationsOfObject

> RepresentationsOfObject(object) (operation)

returns a list of the names of the representations object has.
Example

gap> g:=Group((1,2),(1,2,3));;
gap> Representations0fObject(g) ;
["IsComponentObjectRep", "IsAttributeStoringRep"]

13.5 Attributes

The attributes of an object describe knowledge about it.

An attribute is a unary operation without side-effects.

An object may store values of its attributes once they have been computed, and claim that it knows
these values. Note that “store” and “know” have to be understood in the sense that it is very cheap to
get such a value when the attribute is called again.

The stored value of an attribute is in general immutable (see 12.6), except if the attribute had been
specially constructed as “mutable attribute”.

It depends on the representation of an object (see 13.4) which attribute values it stores. An object
in the representation IsAttributeStoringRep stores all attribute values once they are computed.
Moreover, for an object in this representation, subsequent calls to an attribute will return the same
object; this is achieved via a special method for each attribute setter that stores the attribute value in

GAP - Reference Manual 173

an object in IsAttributeStoringRep, and a special method for the attribute itself that fetches the
stored attribute value. (These methods are called the “system setter” and the “system getter” of the
attribute, respectively.)

Note also that it is impossible to get rid of a stored attribute value because the system may have
drawn conclusions from the old attribute value, and just removing the value might leave the data
structures in an inconsistent state. If necessary, a new object can be constructed.

Several attributes have methods for more than one argument. For example IsTransitive
(41.10.1) is an attribute for a G-set that can also be called for the two arguments, being a group G
and its action domain. If attributes are called with more than one argument then the return value is not
stored in any of the arguments.

Properties are a special form of attributes that have the value true or false, see section 13.7.

Examples of attributes for multiplicative elements are Inverse (31.10.8), One (31.10.2), and
Order (31.10.10). Size (30.4.6) is an attribute for domains, Centre (35.4.5) is an attribute for mag-
mas, and DerivedSubgroup (39.12.3) is an attribute for groups.

13.5.1 KnownAttributesOfObject

> KnownAttributesOfObject(object) (operation)

returns a list of the names of the attributes whose values are known for object.

Example

gap> g:=Group((1,2),(1,2,3));;Size(g);;

gap> KnownAttributes0f0Object(g) ;

["Size", "OneImmutable", "NrMovedPoints", "MovedPoints",
"GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement",
"HomePcgs", "Pcgs", "StabChainMutable", "StabChainOptions"]

13.6 Setter and Tester for Attributes

For every attribute, the attribute setter and the attribute tester are defined.

To check whether an object belongs to an attribute attr, the tester of the attribute is used, see
Tester (13.6.1). To store a value for the attribute attr in an object, the setter of the attribute is used,
see Setter (13.6.2).

13.6.1 Tester

> Tester(attr) (function)

For an attribute attr, Tester (attr) is a filter (see 13.2) that returns true or false, depending
on whether or not the value of attr for the object is known. For example, Tester(Size) (obj
) is true if the size of the object obj is known.

13.6.2 Setter

> Setter(attr) (function)

GAP - Reference Manual 174

For an attribute attr, Setter(attr) is called automatically when the attribute value has been
computed for the first time. One can also call the setter explicitly, for example, Setter(Size) (
obj, val) sets val as size of the object obj if the size was not yet known.

For each attribute attr that is declared with DeclareAttribute (79.18.9)
resp. DeclareProperty (79.18.10) (see 79.18), tester and setter are automatically made acces-
sible by the names Hasattr and Setattr, respectively. For example, the tester for Size (30.4.6) is
called HasSize, and the setter is called SetSize.

Example
gap> g:=Group((1,2,3,4),(1,2));;Size(g);
24
gap> HasSize(g);
true

gap> SetSize(g,99);
gap> Size(g);
24

For two properties propl and prop2, the intersection propl and prop2 (see 13.2) is again a
property for which a setter and a tester exist. Setting the value of this intersection to true for a GAP
object means to set the values of prop1 and prop2 to true for this object.

Example
gap> prop:= IsFinite and IsCommutative;
<Property "(IsFinite and IsCommutative)">
gap> g:= Group((1,2,3), (4,5));;

gap> Tester(prop)(g);

false

gap> Setter(prop)(g, true);

gap> Tester(prop)(g); prop(g);

true

true

It is not allowed to set the value of such an intersection to false for an object.
Example
gap> Setter(prop)(Rationals, false);
You cannot set an "and-filter" except to true

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can type ’return true;’ to set all components true

(but you might really want to reset just one component) to continue
brk>

13.6.3 AttributeValueNotSet

> AttributeValueNotSet(attr, obj) (function)

If the value of the attribute attr is already stored for obj, AttributeValueNotSet simply
returns this value. Otherwise the value of attr (obj) is computed and returned without storing it
in obj. This can be useful when “large” attribute values (such as element lists) are needed only once
and shall not be stored in the object.

GAP - Reference Manual 175

Example

gap> HasAsSSortedList(g);

false

gap> AttributeValueNotSet (AsSSortedList,g);

[O, 4,8, (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5)]
gap> HasAsSSortedList(g);

false

The normal behaviour of attributes (when called with just one argument) is that once a method has
been selected and executed, and has returned a value the setter of the attribute is called, to (possibly)
store the computed value. In special circumstances, this behaviour can be altered dynamically on
an attribute-by-attribute basis, using the functions DisableAttributeValueStoring (13.6.5) and
EnableAttributeValueStoring (13.6.6).

In general, the code in the library assumes, for efficiency, but not for correctness, that attribute
values will be stored (in suitable objects), so disabling storing may cause substantial computations to
be repeated.

13.6.4 InfoAttributes

> InfoAttributes (info class)

This info class (together with InfoWarning (7.4.7) is used for messages about attribute storing
being disabled (at level 2) or enabled (level 3). It may be used in the future for other messages
concerning changes to attribute behaviour.

13.6.5 DisableAttributeValueStoring

> DisableAttributeValueStoring(attr) (function)

disables the usual call of Setter(attr) when a method for attr returns a value. In conse-
quence the values will never be stored. Note that attr must be an attribute and not a property.

13.6.6 EnableAttributeValueStoring

> EnableAttributeValueStoring(attr) (function)

enables the usual call of Setter(attr) when a method for attr returns a value.
In consequence the values may be stored. This will usually have no effect unless
DisableAttributeValueStoring (13.6.5) has previously been used for attr. Note that attr must
be an attribute and not a property.
Example
gap> g := Group((1,2,3,4,5),(1,2,3));
Group([(1,2,3,4,5), (1,2,3) 1)
gap> KnownAttributesO0fObject(g) ;
["LargestMovedPoint", "GeneratorsOfMagmaWithInverses",

"MultiplicativeNeutralElement"]

gap> SetInfoLevel (InfoAttributes,3);
gap> DisableAttributeValueStoring(Size);
#I Disabling value storing for Size

GAP - Reference Manual 176

gap> Size(g);

60

gap> KnownAttributes0fObject(g);

["OneImmutable", "LargestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses",

"MultiplicativeNeutralElement", "StabChainMutable",
"StabChainOptions"]

gap> Size(g);

60

gap> EnableAttributeValueStoring(Size);

#I Enabling value storing for Size

gap> Size(g);

60

gap> KnownAttributes0fObject(g);

["Size", "OneImmutable", "LargestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement", "StabChainMutable",
"StabChainOptions"]

13.7 Properties

The properties of an object are those of its attributes (see 13.5) whose values can only be true or
false.

The main difference between attributes and properties is that a property defines two sets of objects,
namely the usual set of all objects for which the value is known, and the set of all objects for which
the value is known to be true.

(Note that it makes no sense to consider a third set, namely the set of objects for which the value
of a property is true whether or not it is known, since there may be objects for which the containment
in this set cannot be decided.)

For a property prop, the containment of an object obj in the first set is checked again by applying
Tester(prop) to obj, and obj lies in the second set if and only if Tester(prop) (obj)
and prop(obj) istrue.

If a property value is known for an immutable object then this value is also stored, as part of the
type of the object. To some extent, property values of mutable objects also can be stored, for example
a mutable list all of whose entries are immutable can store whether it is strictly sorted. When the
object is mutated (for example by list assignment) the type may need to be adjusted.

Important properties for domains are IsAssociative (35.4.7), IsCommutative (35.4.9),
IsAnticommutative (56.4.6), IsLDistributive (56.4.3) and IsRDistributive (56.4.4), which
mean that the multiplication of elements in the domain satisfies (axb)xc =ax* (bxc), axb=bxa,
axb=—(bxa),ax(b+c)=axb+axc,and (a+b)*c=axc+bxc, respectively, for all a, b, ¢ in
the domain.

13.7.1 KnownPropertiesOfObject

> KnownPropertiesOfObject(object) (operation)

returns a list of the names of the properties whose values are known for object.

GAP - Reference Manual 177

13.7.2 KnownTruePropertiesOfObject

> KnownTrueProperties0fObject(object) (operation)

returns a list of the names of the properties known to be true for object.
Example

gap> g:=Group((1,2),(1,2,3));;

gap> KnownProperties0fObject(g);

["IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",
"CanEasilyCompareElements", "CanEasilySortElements",
"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses",
"IsAssociative", "IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsInverseSemigroup",
"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",
"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsInfiniteAbelianizationGroup",
"IsNilpotentByFinite", "IsTorsionFree", "IsFreeAbelian"]

gap> Size(g);

6

gap> KnownPropertiesO0fObject(g) ;

["IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",
"CanEasilyCompareElements", "CanEasilySortElements",
"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses",
"IsAssociative", "IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsInverseSemigroup",
"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",
"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsPerfectGroup", "IsSolvableGroup",
"IsPolycyclicGroup", "IsInfiniteAbelianizationGroup",
"IsNilpotentByFinite", "IsTorsionFree", "IsFreeAbelian"]

gap> KnownTruePropertiesOfObject(g);

["IsNonTrivial", "IsFinite", "CanEasilyCompareElements",
"CanEasilySortElements", "IsDuplicateFree",
"IsGeneratorsOfMagmaWithInverses", "IsAssociative",
"IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsInverseSemigroup",
"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",
"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsSolvableGroup", "IsPolycyclicGroup",
"IsNilpotentByFinite"]

13.8 Other Filters

There are situations where one wants to express a kind of knowledge that is based on some heuristic.
For example, the filters (see 13.2) CanEasilyTestMembership (39.25.1) and
CanEasilyComputePcgs (45.2.3) are defined in the GAP library. Note that such filters do not
correspond to a mathematical concept, contrary to properties (see 13.7). Also it need not be defined
what “easily” means for an arbitrary GAP object, and in this case one cannot compute the value for

GAP - Reference Manual 178

an arbitrary GAP object. In order to access this kind of knowledge as a part of the type of an object,
GAP provides filters for which the value is false by default, and it is changed to true in certain
situations, either explicitly (for the given object) or via a logical implication (see 78.7) from other
filters.

For example, a true value of CanEasilyComputePcgs (45.2.3) for a group means that certain
methods are applicable that use a pcgs (see 45.1) for the group. There are logical implications to set
the filter value to true for permutation groups that are known to be solvable, and for groups that have
already a (sufficiently nice) pcgs stored. In the case one has a solvable matrix group and wants to
enable methods that use a pcgs, one can set the CanEasilyComputePcgs (45.2.3) value to true for
this particular group.

A filter filt of the kind described here is different from the other filters introduced in the previous
sections. In particular, filt is not a category (see 13.3) or a property (see 13.7) because its value may
change for a given object, and filt is not a representation (see 13.4) because it has nothing to do with
the way an object is made up from some data. £ilt is similar to an attribute tester (see 13.6), the only
difference is that fi1t does not refer to an attribute value; note that £i1t is also used in the same way
as an attribute tester; namely, the true value may be required for certain methods to be applicable.

13.9 Types

We stated above (see 13) that, for an object obj, its type is formed from its family and its filters. There
is a also a third component, used in a few situations, namely defining data of the type.

139.1 TypeObj

> TypeObj (Obj) (function)

returns the type of the object obj.

The type of an object is itself an object.

Two types are equal if and only if the two families are identical, the filters are equal, and, if present,
also the defining data of the types are equal.

13.9.2 DataType

> DataType (type) (function)

The last part of the type, defining data, has not been mentioned before and seems to be of minor
importance. It can be used, e.g., for cosets U g of a group U, where the type of each coset may contain
the group U as defining data. As a consequence, two such cosets mod U and V can have the same type
only if U = V. The defining data of the type type can be accessed via DataType.

Chapter 14

Integers

One of the most fundamental datatypes in every programming language is the integer type. GAP is
no exception.

GAP integers are entered as a sequence of decimal digits optionally preceded by a “+” sign for
positive integers or a “-” sign for negative integers. The size of integers in GAP is only limited by the
amount of available memory, so you can compute with integers having thousands of digits.

Example

gap> -1234;

-1234

gap> 123456789012345678901234567890123456789012345678901234567890;
123456789012345678901234567890123456789012345678901234567890

Many more functions that are mainly related to the prime residue group of integers modulo an
integer are described in chapter 15, and functions dealing with combinatorics can be found in chap-
ter 16.

14.1 Integers: Global Variables

14.1.1 Integers (global variable)

> Integers (global variable)
> Positivelntegers (global variable)
> Nonnegativelntegers (global variable)

These global variables represent the ring of integers and the semirings of positive and nonnegative
integers, respectively.
Example
gap> Size(Integers); 2 in Integers;
infinity
true

Integers is a subset of Rationals (17.1.1), which is a subset of Cyclotomics (18.1.2). See
Chapter 18 for arithmetic operations and comparison of integers.

179

GAP - Reference Manual 180

14.1.2 IsIntegers

> IsIntegers(obj) (Category)
> IsPositivelIntegers(obj) (Category)
> IsNonnegativeIntegers(obj) (Category)

are the defining categories for the domains Integers (14.1.1), PositiveIntegers (14.1.1), and
NonnegativeIntegers (14.1.1).
Example
gap> IsIntegers(Integers); IsIntegers(Rationals); IsIntegers(7);
true
false

false

14.2 Elementary Operations for Integers

14.2.1 IsInt

> IsInt(obj) (Category)

Every rational integer lies in the category IsInt, which is a subcategory of IsRat (17.2.1).

14.2.2 1IsPosInt

> IsPosInt(Obj) (Category)

Every positive integer lies in the category IsPosInt.

14.2.3 Int

> Int(elm) (attribute)

Int returns an integer int whose meaning depends on the type of elm. For example:

If elm is a rational number (see Chapter 17) then int is the integer part of the quotient of numer-
ator and denominator of elm (see QuoInt (14.3.1)).

If elm is an element of a finite prime field (see Chapter 59) then int is the smallest nonnegative
integer such that eIm = int * One(elm).

If elm is a string (see Chapter 27) consisting entirely of decimal digits >0°, *1°, ..., 9’ and
optionally a sign ’-’ (at the first position), then int is the integer described by this string. For all
other strings, fail is returned. See Int (27.9.1).

The operation String (27.7.6) can be used to compute a string for rational integers, in fact for all
cyclotomics.

Example

gap> Int(4/3); 1Int(-2/3);

1

0

gap> int:= Int(Z(5)); dint * One(Z(5));
2

GAP - Reference Manual 181

Z(5)

gap> Int("12345"); Int("-27"); Int("-27/3");
12345

=27

fail

14.2.4 IsEvenlnt

> IsEvenInt(n) (function)

tests if the integer n is divisible by 2.

14.2.5 IsOddInt

> Is0ddInt(n) (function)

tests if the integer n is not divisible by 2.

14.2.6 AbsInt

> AbsInt(n) (function)

AbsInt returns the absolute value of the integer n, i.e., n if n is positive, -n if n is negative and 0
ifnisO.

AbsInt is a special case of the general operation EuclideanDegree (56.6.2).

See also AbsoluteValue (18.1.8).
Example

gap> AbsInt(33);

33

gap> AbsInt(-214378);
214378

gap> AbsInt(0);

0

14.2.7 Signlnt

> Signlnt (n) (function)

SignInt returns the sign of the integer n, i.e., 1 if n is positive, -1 if n is negative and O if n is 0.

Example
gap> SignInt(33);
1
gap> SignInt(-214378);
-1

gap> SignInt(0);
0

GAP - Reference Manual 182

14.2.8 Loglnt

> LogInt(n, base) (function)

LogInt returns the integer part of the logarithm of the positive integer n with respect to the positive
integer base, i.e., the largest positive integer e such that base® < n. The function LogInt will signal
an error if either n or base is not positive.

For base =2 this is very efficient because the internal binary representation of the integer is used.

Example

gap> LogInt(1030, 2);
10

gap> 2710;

1024

gap> LogInt(1, 10);

0

14.2.9 RootlInt

> RootInt(al, kJ) (function)

RootInt returns the integer part of the kth root of the integer n. If the optional integer argument
k is not given it defaults to 2, i.e., RootInt returns the integer part of the square root in this case.

If n is positive, RootInt returns the largest positive integer r such that X <n. Ifnis negative
and k is odd RootInt returns -RootInt(-n, k). If n is negative and k is even RootInt will
cause an error. RootInt will also cause an error if k is O or negative.

Example

gap> RootInt(361);

19

gap> RootInt(2 * 10712);
1414213

gap> RootInt(17000, 5);
7

gap> 7°5;

16807

14.2.10 SmallestRootInt
> SmallestRootInt (n) (function)
SmallestRootInt returns the smallest root of the integer n.

The smallest root of an integer n is the integer r of smallest absolute value for which a positive
integer k exists such that n = 7,

Example
gap> SmallestRootInt(2730);
2
gap> SmallestRootInt(-(27°30));
-4

Note that (—2)30 = +(23°).

GAP - Reference Manual 183

Example

gap> SmallestRootInt(279936);
6

gap> LogInt(279936, 6);

7

gap> SmallestRootInt(1001);
1001

14.2.11 ListOfDigits

> List0fDigits(n) (function)

For a positive integer n this function returns a list 1, consisting of the digits of n in decimal
representation.
Example

gap> List0fDigits(3142);
(3,1, 4, 2]

14.2.12 Random (for integers)

> Random(Integers) (method)

Random for integers returns pseudo random integers between —10 and 10 distributed according to
a binomial distribution. To generate uniformly distributed integers from a range, use the construction
Random([low .. high 1) (see Random (30.7.1)).

14.3 Quotients and Remainders

14.3.1 Quolnt

> Quolnt (Il, m) (function)

QuoInt returns the integer part of the quotient of its integer operands.

If n and m are positive, QuoInt returns the largest positive integer g such that g*xm < n. If n orm
or both are negative the absolute value of the integer part of the quotient is the quotient of the absolute
values of n and m, and the sign of it is the product of the signs of n and m.

QuoInt is used in a method for the general operation EuclideanQuotient (56.6.3).

Example
gap> QuoInt(5,3); QuoInt(-5,3); QuoInt(5,-3); Quolnt(-5,-3);
1
-1
-1
1

14.3.2 BestQuolnt

> BestQuoInt(n, m) (function)

GAP - Reference Manual 184

BestQuoInt returns the best quotient g of the integers n and m. This is the quotient such that
n — g +m has minimal absolute value. If there are two quotients whose remainders have the same
absolute value, then the quotient with the smaller absolute value is chosen.

Example
gap> BestQuoInt(5, 3); BestQuoInt(-5, 3);
2
-2
14.3.3 Remlnt
> RemInt(n , m) (function)

RemInt returns the remainder of its two integer operands.

If m is not equal to zero, RemInt returns n - m * QuoInt(n, m). Note that the rules given
for QuoInt (14.3.1) imply that the return value of RemInt has the same sign as n and its absolute value
is strictly less than the absolute value of m. Note also that the return value equals n mod m when both
n and m are nonnegative. Dividing by 0 signals an error.

RemInt is used in a method for the general operation EuclideanRemainder (56.6.4).
Example
gap> RemInt(5,3); RemInt(-5,3); RemInt(5,-3); RemInt(-5,-3);
2

-2

2

-2

14.3.4 GedInt

> GedInt(m, n) (function)

GedInt returns the greatest common divisor of its two integer operands m and n, i.e., the greatest
integer that divides both m and n. The greatest common divisor is never negative, even if the arguments
are. We define GedInt(m, 0) = GedInt(O, m) = AbsInt(m) and GedInt(0, 0) =
0.

GecdInt is a method used by the general function Ged (56.7.1).

Example

gap> GcdInt(123, 66);
3

14.3.5 Gecedex

> Gcdex(m, n) (function)

returns a record g describing the extended greatest common divisor of m and n. The compo-
nent gcd is this gcd, the components coeffl and coeff2 are integer cofactors such that g.gcd =
g.coeffl * m + g.coeff2 * n, and the components coeff3 and coeff4 are integer cofactors
suchthat 0 = g.coeff3 * m + g.coeff4d * n.

If m and n both are nonzero, AbsInt(g.coeffl) is less than or equal to AbsInt(n) / (2 *
g.gcd), and AbsInt(g.coeff2) is less than or equal to AbsInt(m) / (2 * g.gcd).

GAP - Reference Manual 185

If m or n or both are zero coeff3is -n / g.gcd and coeffdism / g.gcd.
The coefficients always form a unimodular matrix, i.e., the determinant g.coeffl * g.coeff4
- g.coeff3 * g.coeff2is1or—1.

Example

gap> Gecdex(123, 66);

rec(coeffl := 7, coeff2 := -13, coeff3d := -22, coeffd := 41,
ged := 3)

This means 3 =7 123 — 13 %66, 0 = —22 % 123 +41 % 66.
Example

gap> Gedex(0, -3);
rec(coeffl := 0, coeff2 := -1, coeff3 := 1, coeff4 := 0, gcd := 3)
gap> Gcdex(0, 0);
rec(coeffl := 1, coeff2 := 0, coeff3 := 0, coeffd := 1, gcd := 0)

GcdRepresentation (56.7.3) provides similar functionality over arbitrary Euclidean rings.

14.3.6 Lcmlint

> LemInt (m, n) (function)

returns the least common multiple of the integers m and n.
LemInt is a method used by the general operation Lem (56.7.6).
Example

gap> LemInt(123, 66);
2706

14.3.7 CoefficientsQadic

> CoefficientsQadic(i, @) (operation)

returns the g-adic representation of the integer i as a list / of coefficients satisfying the equality
i=Y,_q’ I[j+1] foran integer g > 1.
Example

gap> l:=CoefficientsQadic(462,3);
[0, 1,0, 2,2, 1]

14.3.8 CoefficientsMultiadic

> CoefficientsMultiadic(ints, int) (function)

returns the multiadic expansion of the integer int modulo the integers given in ints (in ascending
order). It returns a list of coefficients in the reverse order to that in ints.

GAP - Reference Manual 186

14.3.9 ChineseRem

> ChineseRem(moduli, residues) (function)

ChineseRem returns the combination of the residues modulo the moduli, i.e., the unique integer
c from [0..Lcm(moduli)-1] such that c = residues [i] modulo moduli [i] for all i, if it exists.
If no such combination exists ChineseRem signals an error.

Such a combination does exist if and only if residues[i] = residues [k] mod Gcd(
moduli[i], moduli [k]) for every pair i, k. Note that this implies that such a combination exists
if the moduli are pairwise relatively prime. This is called the Chinese remainder theorem.

Example
gap> ChineseRem([2, 3, 5, 71, [1, 2, 3, 41);
53
gap> ChineseRem([6, 10, 141, [1, 3, 51);
103
Example

gap> ChineseRem([6, 10, 141, [1, 2, 31);

Error, the residues must be equal modulo 2 called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> gap>

14.3.10 PowerModInt

> PowerModInt(r, e, m) (function)

returns € (mod m) for integers r, e and m.

Note that PowerModInt can reduce intermediate results and thus will generally be faster than
using r~e mod m, which would compute r€ first and reduces the result afterwards.

PowerModInt is a method for the general operation PowerMod (56.7.9).

14.4 Prime Integers and Factorization
14.4.1 Primes

> Primes (global variable)

Primes is a strictly sorted list of the 168 primes less than 1000.
This is used in IsPrimeInt (14.4.2) and FactorsInt (14.4.7) to cast out small primes quickly.
Example

gap> Primes[1];

2

gap> Primes[100];
541

GAP - Reference Manual 187

14.4.2 IsPrimelnt

> IsPrimeInt(n) (function)
> IsProbablyPrimeInt(n) (function)

IsPrimelInt returns false if it can prove that the integer n is composite and true otherwise.
By convention IsPrimeInt(0) = IsPrimeInt(1) = false and we define IsPrimeInt(-n) =
IsPrimeInt(n).

IsPrimelInt will return true for every prime n. IsPrimeInt will return false for all composite
n < 10" and for all composite n that have a factor p < 1000. So for integers n < 10'8, IsPrimeInt
is a proper primality test. It is conceivable that IsPrimeInt may return true for some composite
n > 10", but no such n is currently known. So for integers n > 10'®, IsPrimeInt is a probable-
primality test. IsPrimeInt will issue a warning when its argument is probably prime but not a proven
prime. (The function IsProbablyPrimeInt will do a similar calculation but not issue a warning.)
The warning can be switched off by SetInfoLevel(InfoPrimeInt, O);, the default level is 1
(also see SetInfolevel (7.4.3)).

If composites that fool IsPrimeInt do exist, they would be extremely rare, and finding one by
pure chance might be less likely than finding a bug in GAP. We would appreciate being informed
about any example of a composite number n for which IsPrimeInt returns true.

IsPrimelnt is a deterministic algorithm, i.e., the computations involve no random numbers, and
repeated calls will always return the same result. IsPrimeInt first does trial divisions by the primes
less than 1000. Then it tests that n is a strong pseudoprime w.r.t. the base 2. Finally it tests whether
n is a Lucas pseudoprime w.r.t. the smallest quadratic nonresidue of n. A better description can be
found in the comment in the library file primality.gi.

The time taken by IsPrimeInt is approximately proportional to the third power of the number of
digits of n. Testing numbers with several hundreds digits is quite feasible.

IsPrimelnt is a method for the general operation IsPrime (56.5.8).

Remark: In future versions of GAP we hope to change the definition of IsPrimeInt to return
true only for proven primes (currently, we lack a sufficiently good primality proving function). In
applications, use explicitly IsPrimeInt or IsProbablyPrimeInt with this change in mind.
Example

gap> IsPrimelInt(2731 - 1);
true
gap> IsPrimelInt(10742 + 1);
false

14.4.3 PrimalityProof

> PrimalityProof (n) (function)

Construct a machine verifiable proof of the primality of (the probable prime) n, following the
ideas of [BL.S75]. The proof consists of various Fermat and Lucas pseudoprimality tests, which taken
as a whole prove the primality. The proof is represented as a list of witnesses of two kinds. The first
kind, ["F", divisor, base], indicates a successful Fermat pseudoprimality test, where n is a
strong pseudoprime at base with order not divisible by (n — 1)/divisor. The second kind, ["L",
divisor, discriminant, P] indicates a successful Lucas pseudoprimality test, for a quadratic
form of given discriminant and middle term P with an extra check at (n + 1) /divisor.

GAP - Reference Manual

14.4.4 IsPrimePowerlInt

> IsPrimePowerInt (n)

IsPrimePowerInt returns true if the integer n is a prime power and false otherwise.

188

(function)

An integer n is a prime power if there exists a prime p and a positive integer i such that p’ = n.
If n is negative the condition is that there must exist a negative prime p and an odd positive integer i

such that p' = n. The integers 1 and -1 are not prime powers.

Note that IsPrimePowerInt uses SmallestRootInt (14.2.10) and a probable-primality test (see

IsPrimelInt (14.4.2)).

Example
gap> IsPrimePowerInt(3175);
true
gap> IsPrimePowerInt(2°31-1); # 2°31-1 is actually a prime
true
gap> IsPrimePowerInt(2763-1);
false

gap> Filtered([-10..10], IsPrimePowerInt);
['8: _7: '5: '3’ _2) 2: 3’ 47 5: 7: 8, 9]

14.4.5 NextPrimelnt

> NextPrimeInt (n) (function)
NextPrimeInt returns the smallest prime which is strictly larger than the integer n.
Note that NextPrimeInt uses a probable-primality test (see IsPrimeInt (14.4.2)).
Example
gap> NextPrimeInt(541); NextPrimeInt(-1);
547
2
14.4.6 PrevPrimelnt
> PrevPrimelInt (n) (function)
PrevPrimelInt returns the largest prime which is strictly smaller than the integer n.
Note that PrevPrimeInt uses a probable-primality test (see IsPrimeInt (14.4.2)).
Example
gap> PrevPrimelInt(541); PrevPrimeInt(1);
523
-2
14.4.7 FactorsInt
> FactorsInt(n) (function)
> FactorsInt(a: RhoTrials := trials) (function)

GAP - Reference Manual 189

FactorsInt returns a list of factors of a given integer n such that Product (FactorsInt(n)
) = n. If |n| <1 the list [n] is returned. Otherwise the result contains probable primes, sorted by
absolute value. The entries will all be positive except for the first one in case of a negative n.

See PrimeDivisors (14.4.8) for a function that returns a set of (probable) primes dividing n.

Note that FactorsInt uses a probable-primality test (see IsPrimeInt (14.4.2)). Thus
FactorsInt might return a list which contains composite integers. In such a case you will get a
warning about the use of a probable prime. You can switch off these warnings by SetInfoLevel(
InfoPrimeInt, O); (also see SetInfoLevel (7.4.3)).

The time taken by FactorsInt is approximately proportional to the square root of the second
largest prime factor of n, which is the last one that FactorsInt has to find, since the largest factor
is simply what remains when all others have been removed. Thus the time is roughly bounded by the
fourth root of n. FactorsInt is guaranteed to find all factors less than 10° and will find most factors
less than 10'°. If n contains multiple factors larger than that FactorsInt may not be able to factor n
and will then signal an error.

FactorsInt is used in a method for the general operation Factors (56.5.9).

In the second form, FactorsInt calls FactorsRho with a limit of trials on the number of
trials it performs. The default is 8192. Note that Pollard’s Rho is the fastest method for finding prime
factors with roughly 5-10 decimal digits, but becomes more and more inferior to other factorization
techniques like e.g. the Elliptic Curves Method (ECM) the bigger the prime factors are. Therefore
instead of performing a huge number of Rho trials, it is usually more advisable to install the Factint
package and then simply to use the operation Factors (56.5.9). The factorization of the 8-th Fermat
number by Pollard’s Rho below takes already a while.
Example

gap> FactorsInt(-Factorial(6));

[-2, 2,2, 2,3, 3, 5]

gap> Set(FactorsInt(Factorial(13)/11));

[2, 35,7, 131]

gap> FactorsInt(2763 - 1);

L7, 7, 73, 127, 337, 92737, 649657]

gap> FactorsInt(10742 + 1);

[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]

gap> FactorsInt(27256+1:RhoTrials:=100000000) ;

[1238926361552897,
93461639715357977769163558199606896584051237541638188580280321]

14.4.8 PrimeDivisors

> PrimeDivisors(n) (attribute)

PrimeDivisors returns for a non-zero integer n a set of its positive (probable) primes divisors.
In rare cases the result could contain a composite number which passed certain primality tests, see
IsProbablyPrimelInt (14.4.2) and FactorsInt (14.4.7) for more details.
Example

gap> PrimeDivisors(-12);
[2,3]
gap> PrimeDivisors(1);

1

GAP - Reference Manual 190

14.4.9 PartialFactorization

> PartialFactorization(n[, effort]) (operation)

PartialFactorization returns a partial factorization of the integer n. No assertions are made
about the primality of the factors, except of those mentioned below.

The argument effort, if given, specifies how intensively the function should try to determine
factors of n. The default is effort =S5.

« If effort =0, trial division by the primes below 100 is done. Returned factors below 10* are
guaranteed to be prime.

« If effort = 1, trial division by the primes below 1000 is done. Returned factors below 10° are
guaranteed to be prime.

o If effort = 2, additionally trial division by the numbers in the lists Primes2 and
ProbablePrimes2 is done, and perfect powers are detected. Returned factors below 10° are
guaranteed to be prime.

* If effort = 3, additionally FactorsRho (Pollard’s Rho) with RhoTrials = 256 is used.
e If effort =4, as above, but RhoTrials = 2048.

o If effort =5, as above, but RhoTrials = 8192. Returned factors below 10'? are guaranteed
to be prime, and all prime factors below 10° are guaranteed to be found.

» If effort = 6 and the package Factint is loaded, in addition to the above quite a number of
special cases are handled.

* If effort =7 and the package FactInt is loaded, the only thing which is not attempted to obtain
a full factorization into Baillie-Pomerance-Selfridge-Wagstaff pseudoprimes is the application
of the MPQS to a remaining composite with more than 50 decimal digits.

Increasing the value of the argument effort by one usually results in an increase of the runtime
requirements by a factor of (very roughly!) 3 to 10. (Also see CheapFactorsInt (EDIM: Cheap-

FactorsInt)).
Example
gap> List([0..5],i->PartialFactorization(97°35-1,1));
(2,2, 2, 2,2, 3, 11, 31, 43,
2446338959059521520901826365168917110105972824229555319002965029],
[2, 2, 2,2, 2, 3, 11, 31, 43, 967,
2529823122088440042297648774735177983563570655873376751812787],
[2, 2,2, 2,2, 3, 11, 31, 43, 967,
2529823122088440042297648774735177983563570655873376751812787],
[2, 2,2, 2,2, 3, 11, 31, 43, 967, 39761, 262321,
242549173950325921859769421435653153445616962914227 1],
[2, 2,2, 2,2, 3, 11, 31, 43, 967, 39761, 262321, 687121,
352993394104278463123335513593170858474150787 1,
[2, 2,2, 2,2, 3, 11, 31, 43, 967, 39761, 262321, 687121,
20241187, 504769301, 34549173843451574629911361501 1]

GAP - Reference Manual 191
14.4.10 PrintFactorsInt
> PrintFactorsInt (n) (function)

prints the prime factorization of the integer n in human-readable form. See also StringPP
(27.7.9).

Example
gap> PrintFactorsInt(Factorial(7)); Print("\n");
274%372x5%7
14.4.11 PrimePowersInt
> PrimePowersInt(n) (function)
returns the prime factorization of the integer n as alist [py,e1,..., pr,er] withn = pi' - p7? - ...- pi*.
For negative integers, the absolute value is taken. Zero is not allowed as input.
Example

gap> PrimePowersInt(Factorial(7));
[2, 4,3,2,5,1,7,1]
gap> PrimePowersInt(1);

1

14.4.12 DivisorsInt

> DivisorsInt(n) (function)

DivisorsInt returns a list of all divisors of the integer n. The list is sorted, so that it starts with
1 and ends with n. We define that DivisorsInt(-n) = DivisorsInt(n).

Since the set of divisors of 0 is infinite calling DivisorsInt(O) causes an error.

DivisorsInt may call FactorsInt (14.4.7) to obtain the prime factors. Sigma (15.5.1) and Tau
(15.5.2) compute the sum and the number of positive divisors, respectively.

Example
gap> DivisorsInt(1); DivisorsInt(20); DivisorsInt(541);
[1]
[1, 2, 4, 5, 10, 20]
[1, 541]

14.5 Residue Class Rings

ZmodnZ (14.5.2) returns a residue class ring of Integers (14) modulo an ideal. These residue class
rings are rings, thus all operations for rings (see Chapter 56) apply. See also Chapters 59 and 15.

14.5.1 \mod (for residue class rings)

> \mod(r/s, n) (operation)

GAP - Reference Manual 192

If r, s and n are integers, r / s as a reduced fraction is p/q, where q and n are coprime, then
r / s mod n is defined to be the product of p and the inverse of g modulo n. See Section 4.13 for
more details and definitions.

With the above definition, 4 / 6 mod 32equals2 / 3 mod 32 and hence exists (and is equal to
22), despite the fact that 6 has no inverse modulo 32.

14.5.2 ZmodnZ

> ZmodnZ (n) (function)
> ZmodpZ (p) (function)
> ZmodeNC (p) (function)

ZmodnZ returns a ring R isomorphic to the residue class ring of the integers modulo the ideal
generated by n. The element corresponding to the residue class of the integer i in this ring can be
obtained by i * One(R), and a representative of the residue class corresponding to the element
X € R can be computed by Int(x).

ZmodnZ(n) is equal to Integers mod n.

ZmodpZ does the same if the argument p is a prime integer, additionally the result is a field.
ZmodpZNC omits the check whether p is a prime.

Each ring returned by these functions contains the whole family of its elements if n is not a prime,
and is embedded into the family of finite field elements of characteristic n if n is a prime.

14.5.3 ZmodnZObj (for a residue class family and integer)

> ZmodnZ0bj (Fam, r) (operation)
> ZmOdIlZObj (I‘, Il) (operation)

If the first argument is a residue class family Fam then ZmodnZObj returns the element in Fam
whose coset is represented by the integer r.

If the two arguments are an integer r and a positive integer n then ZmodnZ0bj returns the element
in ZmodnZ(n) (see ZmodnZ (14.5.2)) whose coset is represented by the integer r.

Example
gap> r:= ZmodnZ(15);

(Integers mod 15)

gap> fam:=ElementsFamily(FamilyObj(xr));;
gap> a:= ZmodnZObj(fam,9);

ZmodnZ0bj (9, 15)

gap> ata;

ZmodnZ0bj (3, 15)

gap> Int(ata);

3

14.5.4 TIsZmodnZObj

> I sZmoanObj (Obj) (Category)
> IsZmodnZ0bjNonprime (obj) (Category)
> IsZmodeObj (Obj) (Category)

> IsZmodpZ0bjSmall(obj) (Category)

GAP - Reference Manual 193

> IsZmodpZObjLarge(obj) (Category)

The elements in the rings Z/nZ are in the category IsZmodnZ0bj. If n is a prime then the elements
are of course also in the category ISFFE (59.1.1), otherwise they are in IsZmodnZ0bjNonprime.
IsZmodpZ0Obj is an abbreviation of IsZmodnZ0bj and ISFFE. This category is the disjoint union
of IsZmodpZ0bjSmall and IsZmodpZ0ObjLarge, the former containing all elements with n at most
MAXSIZE_GF_INTERNAL.

The reasons to distinguish the prime case from the nonprime case are

* that objects in IsZmodnZ0bjNonprime have an external representation (namely the residue in
the range [0,1,...,n—1]),

* that the comparison of elements can be defined as comparison of the residues, and

* that the elements lie in a family of type IsZmodnZ0ObjNonprimeFamily (note that for prime n,
the family must be an IsFFEFamily).

The reasons to distinguish the small and the large case are that for small n the elements must
be compatible with the internal representation of finite field elements, whereas we are free to define
comparison as comparison of residues for large n.

Note that we cannot claim that every finite field element of degree 1 is in IsZmodnZ0bj, since
finite field elements in internal representation may not know that they lie in the prime field.

14.6 Check Digits

14.6.1 CheckDigitISBN

> CheckDigitISBN (n) (function)
> CheCkDigitISBN13 (n) (function)
> CheckDigitPostalMoneyOrder (n) (function)
> Che CkDigitUPC (n) (function)

These functions can be used to compute, or check, check digits for some everyday items. In each
case what is submitted as input is either the number with check digit (in which case the function
returns true or false), or the number without check digit (in which case the function returns the
missing check digit). The number can be specified as integer, as string (for example in case of leading
zeros) or as a sequence of arguments, each representing a single digit. The check digits tested are
the 10-digit ISBN (International Standard Book Number) using CheckDigitISBN (since arithmetic is
module 11, a digit 11 is represented by an X); the newer 13-digit ISBN-13 using CheckDigitISBN13;
the numbers of 11-digit US postal money orders using CheckDigitPostalMoneyOrder; and the 12-
digit UPC bar code found on groceries using CheckDigitUPC.

Example

gap> CheckDigitISBN("052166103");

Check Digit is ’X?

,X)

gap> CheckDigitISBN("052166103X");
Checksum test satisfied

true

gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,1);

GAP - Reference Manual 194

Checksum test failed

false

gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,°X’); # note single quotes!
Checksum test satisfied

true

gap> CheckDigitISBN13("9781420094527") ;
Checksum test satisfied

true

gap> CheckDigitUPC("07164183001");

Check Digit is 1

1

gap> CheckDigitPostalMoneyOrder (16786457155) ;
Checksum test satisfied

true

14.6.2 CheckDigitTestFunction

> CheckDigitTestFunction(l, m, f) (function)

This function creates check digit test functions such as CheckDigitISBN (14.6.1) for check digit
schemes that use the inner products with a fixed vector modulo a number. The scheme creates will
use strings of 1 digits (including the check digits), the check consists of taking the standard product
of the vector of digits with the fixed vector £ modulo m; the result needs to be 0. The function returns

a function that then can be used for testing or determining check digits.
Example
gap> isbntest:=CheckDigitTestFunction(10,11,[1,2,3,4,5,6,7,8,9,-11);
function(arg...) ... end

gap> isbntest("038794680") ;

Check Digit is 2

2

14.7 Random Sources

GAP provides Random (30.7.1) methods for many collections of objects. On a lower level these
methods use random sources which provide random integers and random choices from lists.

14.7.1 IsRandomSource

> IsRandomSource(obj) (Category)

This is the category of random source objects which are defined to have, for an object rs in this
category, methods available for the following operations which are explained in more detail below:
Random(rs, list) giving a random element of a list, Random(rs, low, high) giving a
random integer between low and high (inclusive), Init (14.7.3), State (14.7.3) and Reset (14.7.3).

Use RandomSource (14.7.5) to construct new random sources.

One idea behind providing several independent (pseudo) random sources is to make algorithms
which use some sort of random choices deterministic. They can use their own new random source
created with a fixed seed and so do exactly the same in different calls.

GAP - Reference Manual 195

Random source objects lie in the family RandomSourcesFamily.

14.7.2 Random (for random source and list)

> Random(rs, list) (operation)
> Random(rs, low, high) (operation)

This operation returns a random element from list 1ist, or an integer in the range from the given
(possibly large) integers 1ow to high, respectively.
The choice should only depend on the random source rs and have no effect on other random

sources.

Example
gap> mysource := RandomSource(IsMersenneTwister, 42);;

gap> Random(mysource, 1, 10760);
999331861769949319194941485000557997842686717712198687315183

14.7.3 State

> State(rs) (operation)
> Reset(rs[, seed]) (operation)
> Init(prers[, seed]) (operation)

These are the basic operations for which random sources (see IsRandomSource (14.7.1)) must
have methods.

State should return a data structure which allows to recover the state of the random source such
that a sequence of random calls using this random source can be reproduced. If a random source
cannot be reset (say, it uses truly random physical data) then State should return fail.

Reset(rs, seed) resets the random source rs to a state described by seed, if the random
source can be reset (otherwise it should do nothing). Here seed can be an output of State and then
should reset to that state. Also, the methods should always allow integers as seed. Without the seed
argument the default seed =1 is used.

Init is the constructor of a random source, it gets an empty component object prers which has
already the correct type and should fill in the actual data which are needed. Optionally, it should allow
one to specify a seed for the initial state, as explained for Reset.

Most methods for Random (30.7.1) in the GAP library use the GlobalMersenneTwister (14.7.4)
as random source. It can be reset into a known state as in the following example.

Example
gap> seed := Reset (GlobalMersenneTwister);;
gap> seed = State(GlobalMersenneTwister) ;

true

gap> List([1..10],i->Random(Integers));

[-3, 2, -1, -2, -1, -1, 1, -4, 1, 0]
gap> List([1..10],i->Random(Integers));

[-1, -1, -1, 1, -1, 1, -2, -1, -2, 0]
gap> Reset(GlobalMersenneTwister, seed);;
gap> List([1..10],i->Random(Integers));

[-3, 2, -1, -2, -1, -1, 1, -4, 1, 0]

GAP - Reference Manual 196

14.7.4 IsMersenneTwister

> IsMersenneTwister(rs) (Category)
> IsGAPRandomSource(rs) (Category)
> IsGlobalRandomSource(rs) (Category)
> GlobalMersenneTwister (global variable)
> GlobalRandomSource (global variable)

Currently, the GAP library provides three types of random sources, distinguished by the three
listed categories.

IsMersenneTwister are random sources which use a fast random generator of 32 bit numbers,
called the Mersenne twister. The pseudo random sequence has a period of 2!°°37 — 1 and the numbers
have a 623-dimensional equidistribution. For more details and the origin of the code used in the GAP
kernel, see: http://www.math.sci.hiroshima-u.ac.jp/ “m-mat/MT/emt.html.

Use the Mersenne twister if possible, in particular for generating many large random integers.

There is also a predefined global random source GlobalMersenneTwister which is used by most
of the library methods for Random (30.7.1).

IsGAPRandomSource uses the same number generator as IsGlobalRandomSource, but you can
create several of these random sources which generate their random numbers independently of all
other random sources.

IsGlobalRandomSource gives access to the classical global random generator which was used by
GAP in former releases. You do not need to construct new random sources of this kind which would
all use the same global data structure. Just use the existing random source GlobalRandomSource.
This uses the additive random number generator described in [Knu98] (Algorithm A in 3.2.2 with lag
30).

14.7.5 RandomSource

> RandomSource(cat[, seed]) (operation)

This operation is used to create new random sources. The first argument cat is the category
describing the type of the random generator, an optional seed which can be an integer or a type
specific data structure can be given to specify the initial state.

Example
gap> rsl := RandomSource(IsMersenneTwister);
<RandomSource in IsMersenneTwister>
gap> statel := State(rsl);;
gap> 11 := List([1..10000], i-> Random(rsil, [1..6]1));;
gap> rs2 := RandomSource (IsMersenneTwister);;
gap> 12 := List([1..10000], i-> Random(rs2, [1..6]));;
gap> 11 = 12;
true
gap> 11 = List([1..10000], i-> Random(rsl, [1..6]));
false
gap> n := Random(rsl, 1, 27220);
1077726777923092117987668044202944212469136000816111066409337432400

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

GAP - Reference Manual 197

14.8 Bitfields

Bitfields are a low-level feature intended to support efficient subdivision of immediate integers into
bitfields of various widths. This is typically useful in implementing space-efficient and/or cache-
efficient data structures. This feature should be used with care because (infer alia) it has different
limitations on 32-bit and 64-bit architectures.

14.8.1 MakeBitfields

> MakeBitfields(width....) (function)

This function sets up the machinery for a set of bitfields of the given widths. All bitfield values
are treated as unsigned. The total of the widths must not exceed 60 bits on 64-bit architecture or 28
bits on a 32-bit architecture. For performance reasons some checks that one might wish to do are
ommitted. In particular, the builder and setter functions do not check if the value[s] passed to them
are negative or too large (unless GAP is specially compiled for debugging). Behaviour when such
arguments are passed is undefined. You can tell which type of architecture you are running on by
acccessing GAPInfo.BytesPerVariable which is 8 on 64-bits and 4 on 32. The return value when
n widths are given is a record whose fields are

widths
a copy of the arguments, for convenience,

getters
a list of n functions of one argument each of which extracts one of the fields from an immediate
integer

setters
a list of n functions each taking two arguments: a packed value and a new value for one of
its fields and returning a new packed value. The ith function returned the new packed value in
which the ith field has been replaced by the new value. Note that this does NOT modify the
original packed value.

Two additional fields may be present if any of the field widths is one. Each is a list and only has entried
bound in the positions corresponding to the width 1 fields.

booleanGetters
if the ith position of this list is set, it contains a function which extracts the ith field (which will
have width one) and returns true if it contains 1 and false if it contains 0

booleanSetters
if the ith position of this list is set, it contains a function of two arguments. The first argument
is a packed value, the second is true or false. It returns a new packed value in which the ith
field is set to 1 if the second argument was true and 0 if it was false. Behaviour for any other
value is undefined.

14.8.2 BuildBitfields

> BuildBitfields(widths, vals...) (function)

GAP - Reference Manual 198

This function takes one or more argument. It’s first argument is a list of field widths, as found in
the widths entry of a record returned by MakeBitfields. The remaining arguments are unsigned
integer values, equal in number to the entries of the list of field widths. It returns a small integer in
which those entries are packed into bitfields of the given widths. The first entry occupies the least

significant bits. DeclareGlobalFunction("BuildBitfields");
Example

gap> bf := MakeBitfields(1,2,3);
rec(booleanGetters := [function(data) ... end],
booleanSetters := [function(data, val) ... end],
getters := [function(data) ... end, function(data) ... end,
function(data) ... end],
setters := [function(data, val) ... end, function(data, val) ... end,
function(data, val) ... end], widths := [1, 2, 3])
gap> x := BuildBitfields(bf.widths,0,3,5);
46
gap> bf.getters[3] (x);
5
gap> y := bf.setters[1](x,1);
47
gap> X;
46
gap> bf.booleanGetters[1] (x);
false
gap> bf.booleanGetters[1] (y);
true

Chapter 15

Number Theory

GAP provides a couple of elementary number theoretic functions. Most of these deal with the group
of integers coprime to m, called the prime residue group. The order of this group is ¢ (m) (see Phi
(15.2.2)), and A(m) (see Lambda (15.2.3)) is its exponent. This group is cyclic if and only if m is 2,
4, an odd prime power p", or twice an odd prime power 2p”. In this case the generators of the group,
i.e., elements of order ¢ (m), are called primitive roots (see PrimitiveRootMod (15.3.3)).

Note that neither the arguments nor the return values of the functions listed below are groups or
group elements in the sense of GAP. The arguments are simply integers.

15.1 InfoNumtheor (Info Class)

15.1.1 InfoNumtheor

> InfoNumtheor (info class)

InfoNumtheor is the info class (see 7.4) for the functions in the number theory chapter.

15.2 Prime Residues

15.2.1 PrimeResidues

> PrimeResidues (m) (function)

PrimeResidues returns the set of integers from the range [0 .. Abs(m)-1] that are co-
prime to the integer m.
Abs (m) must be less than 228, otherwise the set would probably be too large anyhow.

Example
gap> PrimeResidues(O); PrimeResidues(1); PrimeResidues(20);

[]
0]
[1, 3, 7,9, 11, 13, 17, 19]

199

GAP - Reference Manual 200

15.2.2 Phi

> Phi(m) (operation)

Phi returns the number ¢ (m) of positive integers less than the positive integer m that are coprime
tom

Suppose that m = p{' p$? -+ pi*. Then ¢ (m) is p{' ' (p1r —)ps ™ (p2—1) -+ P~ (pe—1).
Example
gap> Phi(12);
4
gap> Phi(2713-1); # this proves that 2°(13)-1 is a prime
8190
gap> Phi(2715-1);
27000
15.2.3 Lambda
> Lambda(m) (operation)

Lambda returns the exponent A (m) of the group of prime residues modulo the integer m.

A(m) is the smallest positive integer / such that for every a relatively prime to m we have a
(mod m). Fermat’s theorem asserts a® ™) =1 (mod m); thus A (m) divides ¢ (m) (see Phi (15.2.2)).

Carmichael’s theorem states that A can be computed as follows: A(2) =1, A(4) =2 and A(2°) =
2¢72if 3 < e, A(p®) = (p—1)p*~! (i.e. ¢(m))if p is an odd prime and A (m*n) =Lem(A (m), A (n)) if
m,n are coprime.

Composites for which A (m) divides m — 1 are called Carmichaels. If 6k + 1, 12k + 1 and 18k + 1
are primes their product is such a number. There are only 1547 Carmichaels below 10'° but 455052511
primes.

I =

Example

gap> Lambda(10);

4

gap> Lambda(30);

4

gap> Lambda(561); # 561 is the smallest Carmichael number
80

15.2.4 GeneratorsPrimeResidues

> GeneratorsPrimeResidues(n) (function)

Let n be a positive integer. GeneratorsPrimeResidues returns a description of generators of the
group of prime residues modulo n. The return value is a record with components

primes:
a list of the prime factors of n,

exponents:
a list of the exponents of these primes in the factorization of n, and

GAP - Reference Manual 201

generators:
a list describing generators of the group of prime residues; for the prime factor 2, either a
primitive root or a list of two generators is stored, for each other prime factor of n, a primitive
root is stored.

Example
gap> GeneratorsPrimeResidues(1);
rec(exponents := [], generators := [], primes := [])
gap> GeneratorsPrimeResidues(4*3);
rec(exponents := [2, 1], generators := [7, 5],

primes := [2, 3 1)
gap> GeneratorsPrimeResidues(8%9%5);
rec(exponents := [3, 2, 1],
generators := [[271, 181], 281, 217], primes := [2, 3, 51)

15.3 Primitive Roots and Discrete Logarithms

15.3.1 OrderMod

> OrderMod(n, m) (function)

OrderMod returns the multiplicative order of the integer n modulo the positive integer m. If n and
m are not coprime the order of n is not defined and OrderMod will return O.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest positive
integer i such that n’ = (mod m). If the group of prime residues modulo m is cyclic then each
element of maximal order is called a primitive root modulo m (see IsPrimitiveRootMod (15.3.4)).

OrderMod usually spends most of its time factoring m and ¢ (m) (see FactorsInt (14.4.7)).
Example

gap> OrderMod(2, 7);

3

gap> OrderMod(3, 7); # 3 is a primitive root modulo 7
6

15.3.2 LogMod

> LogMod(n, r, m) (function)
> LogModShanks(n, r, m) (function)

computes the discrete r-logarithm of the integer n modulo the integer m. It returns a number 1
such that r =n (mod m) if such a number exists. Otherwise fail is returned.

LogModShanks uses the Baby Step - Giant Step Method of Shanks (see for example [Coh93,
section 5.4.1]) and in general requires more memory than a call to LogMod.

Example
gap> 1:= LogMod(2, 5, 7); 571l mod 7 = 2;
4
true
gap> LogMod(1, 3, 3); LogMod(2, 3, 3);
0
fail

GAP - Reference Manual 202

15.3.3 PrimitiveRootMod

> PrimitiveRootMod(m[, start]) (function)

PrimitiveRootMod returns the smallest primitive root modulo the positive integer m and
fail if no such primitive root exists. If the optional second integer argument start is given
PrimitiveRootMod returns the smallest primitive root that is strictly larger than start.

Example
gap> # largest primitive root for a prime less than 2000:
gap> PrimitiveRootMod(409);

21

gap> PrimitiveRootMod(541, 2);

10

gap> # 327 is the largest primitive root mod 337:

gap> PrimitiveRootMod(337, 327);

fail

gap> # there exists no primitive root modulo 30:

gap> PrimitiveRootMod(30);

fail

15.3.4 IsPrimitiveRootMod

> IsPrimitiveRootMod(r, m) (function)

IsPrimitiveRootMod returns true if the integer r is a primitive root modulo the positive integer
m, and false otherwise. If r is less than O or larger than m it is replaced by its remainder.

Example
gap> IsPrimitiveRootMod(2, 541);
true
gap> IsPrimitiveRootMod(-539, 541); # same computation as above;
true
gap> IsPrimitiveRootMod(4, 541);
false
gap> ForAny([1..29], r -> IsPrimitiveRootMod(r, 30));
false
gap> # there is no a primitive root modulo 30

15.4 Roots Modulo Integers

15.4.1 Jacobi

> Jacobi(n, m) (function)

Jacobi returns the value of the Kronecker-Jacobi symbol J(n,m) of the integer n modulo the
integer m. It is defined as follows:

If n and m are not coprime then J(n,m) = 0. Furthermore, J(n,1) =1 and J(n,—1) =—1if m <0
and +1 otherwise. And for odd nitis J(n,2) = (—1)* with k = (n*> — 1) /8. For odd primes m which are
coprime to n the Kronecker-Jacobi symbol has the same value as the Legendre symbol (see Legendre
(15.4.2)).

GAP - Reference Manual 203

For the general case suppose that m = p; - pa - - - px 1s a product of —1 and of primes, not necessarily
distinct, and that n is coprime to m. Then J(n,m) = J(n,p1)-J(n,p2)---J(n, px).

Note that the Kronecker-Jacobi symbol coincides with the Jacobi symbol that is defined for odd m
in many number theory books. For odd primes m and n coprime to m it coincides with the Legendre
symbol.

Jacobi is very efficient, even for large values of n and m, it is about as fast as the Euclidean
algorithm (see Ged (56.7.1)).

Example
gap> Jacobi(11, 35); # 972 = 11 mod 35
1
gap> # this is -1, thus there is no r such that r"2 = 6 mod 35
gap> Jacobi(6, 35);
-1
gap> # this is 1 even though there is no r with r"2 = 3 mod 35
gap> Jacobi(3, 35);
1
154.2 Legendre
> Legendre(n, m) (function)

Legendre returns the value of the Legendre symbol of the integer n modulo the positive integer m.

The value of the Legendre symbol L(n/m) is 1 if n is a quadratic residue modulo m, i.e., if there
exists an integer r such that > =n (mod m) and —1 otherwise.

If a root of n exists it can be found by RootMod (15.4.3).

While the value of the Legendre symbol usually is only defined for m a prime, we have extended
the definition to include composite moduli too. The Jacobi symbol (see Jacobi (15.4.1)) is another
generalization of the Legendre symbol for composite moduli that is much cheaper to compute, because
it does not need the factorization of m (see FactorsInt (14.4.7)).

A description of the Jacobi symbol, the Legendre symbol, and related topics can be found in
[Bak84].

Example
gap> Legendre(5, 11); # 472 = 5 mod 11

1

gap> # this is -1, thus there is no r such that r~2 = 6 mod 11
gap> Legendre(6, 11);

-1

gap> # this is -1, thus there is no r such that r"2 = 3 mod 35
gap> Legendre(3, 35);

-1

15.4.3 RootMod

> RootMod(n [, k], m) (function)

RootMod computes a kth root of the integer n modulo the positive integer m, i.e., a r such that

K =n (mod m). If no such root exists RootMod returns fail. If only the arguments n and m are

given, the default value for k is 2.

GAP - Reference Manual 204

A square root of n exists only if Legendre(n,m) = 1 (see Legendre (15.4.2)). If m has r dif-
ferent prime factors then there are 2" different roots of n mod m. It is unspecified which one RootMod
returns. You can, however, use RootsMod (15.4.4) to compute the full set of roots.

RootMod is efficient even for large values of m, in fact the most time is usually spent factoring m
(see FactorsInt (14.4.7)).

Example
gap> # note ’RootMod’ does not return 8 in this case but -8:
gap> RootMod(64, 1009);
1001
gap> RootMod(64, 3, 1009);
518
gap> RootMod(64, 5, 1009);
656
gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x -> x mod 1009); # set of all square roots of 64 mod 1009
[1001, 8]

15.4.4 RootsMod

> RootsMod(n[, k], m) (function)

RootsMod computes the set of kth roots of the integer n modulo the positive integer m, i.e., the
list of all such that ¥X =n (mod m). If only the arguments n and m are given, the default value for

kis 2.

Example
gap> RootsMod(1, 7%31); # the same as ‘RootsUnityMod(731)?
[1, 92, 125, 216]

gap> RootsMod(7, 7%31);

[21, 196]
gap> RootsMod(5, 7%31);
[]

gap> RootsMod(1, 5, 7*31);
1, 8, 64, 78, 190]

15.4.5 RootsUnityMod

> RootsUnityMod([k, Jm) (function)

RootsUnityMod returns the set of k-th roots of unity modulo the positive integer m, i.e., the list
of all solutions r of rX =n (mod m). If only the argument m is given, the default value for k is 2.

In general there are k" such roots if the modulus m has n different prime factors p such that p = 1
(mod k). If k? divides m then there are k"*! such roots; and especially if k = 2 and 8 divides m there
are 2"*2 such roots.

In the current implementation k must be a prime.
Example
gap> RootsUnityMod(7*31); RootsUnityMod(3, 731);
[1, 92, 125, 216]

[1, 25, 32, 36, 67, 149, 156, 191, 211]
gap> RootsUnityMod(5, 7*31);
[1, 8, 64, 78, 190 1

GAP - Reference Manual 205

gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x -> x mod 1009); # set of all square roots of 64 mod 1009
[1001, 8]

15.5 Multiplicative Arithmetic Functions

15.5.1 Sigma

> Si gma (n) (operation)

Sigma returns the sum of the positive divisors of the nonzero integer n.

Sigma is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have that
o(n-m)=o(n)o(m).

Together with the formula o (pk) = (p**! —1)/(p — 1) this allows us to compute o(n).

Integers n for which o(n) = 2n are called perfect. Even perfect integers are exactly of the form
20 -1(28 1) where 22 — 1 is prime. Primes of the form 2% — 1 are called Mersenne primes, and 42
among the known Mersenne primes are obtained for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107,
127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209,
44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377,
6972593, 13466917, 20996011, 24036583 and 25964951. Please find more up to date information
about Mersenne primes at http://www.mersenne.org. It is not known whether odd perfect integers
exist, however [BC89] show that any such integer must have at least 300 decimal digits.

Sigma usually spends most of its time factoring n (see FactorsInt (14.4.7)).

Example

gap> Sigma(1);

1

gap> Sigma(1009); # 1009 is a prime

1010

gap> Sigma(8128) = 2%8128; # 8128 is a perfect number
true

15.5.2 Tau

> Tau (n) (operation)

Tau returns the number of the positive divisors of the nonzero integer n.
Tau is a multiplicative arithmetic function, i.e., if n and m are relative prime we have t(n-m) =
7(n)t(m). Together with the formula 7(p*) = k+ 1 this allows us to compute 7(n).

Tau usually spends most of its time factoring n (see FactorsInt (14.4.7)).
Example

gap> Tau(1);

1

gap> Tau(1013); # thus 1013 is a prime

2

gap> Tau(8128);

14

gap> # result is odd if and only if argument is a perfect square:

http://www.mersenne.org

GAP - Reference Manual 206

gap> Tau(36);
9

15.5.3 MoebiusMu

> MoebiusMu(n) (function)

MoebiusMu computes the value of Moebius inversion function for the nonzero integer n. This is O
for integers which are not squarefree, i.e., which are divided by a square 7. Otherwise it is 1 if n has
a even number and —1 if n has an odd number of prime factors.

The importance of u stems from the so called inversion formula. Suppose f is a multiplica-
tive arithmetic function defined on the positive integers and let g(n) = Y4, f(d). Then f(n) =
Yantt(d)g(n/d). As a special case we have ¢(n) = Y4, t(d)n/d since n =Y 4, ¢(d) (see Phi
(15.2.2)).

MoebiusMu usually spends all of its time factoring n (see FactorsInt (14.4.7)).
Example
gap> MoebiusMu(60); MoebiusMu(61); MoebiusMu(62);
0

-1

15.6 Continued Fractions

15.6.1 ContinuedFractionExpansionOfRoot

> ContinuedFractionExpansionOfRoot(f, n) (function)

The first n terms of the continued fraction expansion of the only positive real root of the polyno-
mial £ with integer coefficients. The leading coefficient of £ must be positive and the value of £ at 0
must be negative. If the degree of f is 2 and n = 0, the function computes one period of the continued
fraction expansion of the root in question. Anything may happen if f has three or more positive real

I .
oots Example

gap> x := Indeterminate(Integers);;

gap> ContinuedFractionExpansionOfRoot (x~2-7,20);

[2,1,1,1,4,1,1,1, 4, 1,1, 1, 4,1, 1,1, 4,1, 1, 1]

gap> ContinuedFractionExpansion0fRoot (x~2-7,0);

[2,1, 1,1, 4]

gap> ContinuedFractionExpansionOfRoot (x~3-2,20);

[+ 3,1,5,1,1, 4,1, 1,8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3]

gap> ContinuedFractionExpansionOfRoot(x~5-x-1,50);

(1, 5,1, 42, 1, 3, 24, 2, 2, 1, 16, 1, 11, 1, 1, 2, 31, 1, 12, 5,
i, 7, 11, 1, 4, 1, 4, 2, 2, 3, 4, 2, 1, 1, 11, 1, 41, 12, 1, 8, 1,
1, 1,1, 1,9, 2,1, 5, 4]

15.6.2 ContinuedFractionApproximationOfRoot

> ContinuedFractionApproximationOfRoot(f, n) (function)

GAP - Reference Manual 207

The nth continued fraction approximation of the only positive real root of the polynomial £ with
integer coefficients. The leading coefficient of £ must be positive and the value of £ at 0 must be
negative. Anything may happen if £ has three or more positive real roots.

Example
gap> ContinuedFractionApproximationOfRoot(x~2-2,10);
3363/2378
gap> 3363°2-2%2378"2;
1

gap> z := ContinuedFractionApproximationOfRoot (x~5-x-1,20);
499898783527/428250732317

gap> z~5-z-1;

486192462527432755459620441970617283/
14404247382319842421697357558805709031116987826242631261357

15.7 Miscellaneous
15.7.1 PValuation

> PValuation(n, p) (function)

For an integer n and a prime p this function returns the p-valuation of n, that is the exponent e
such that p° is the largest power of p that divides n. The valuation of zero is infinity.
Example

gap> PValuation(100,2);
2
gap> PValuation(100,3);
0

15.7.2 TwoSquares

> TwoSquares(n) (function)

TwoSquares returns a list of two integers x < y such that the sum of the squares of x and y is equal
to the nonnegative integer n, i.e., n = x> 4 y2. If no such representation exists TwoSquares will return
fail. TwoSquares will return a representation for which the gcd of x and y is as small as possible. It
is not specified which representation TwoSquares returns if there is more than one.

Let a be the product of all maximal powers of primes of the form 4k + 3 dividing n. A represen-
tation of n as a sum of two squares exists if and only if a is a perfect square. Let b be the maximal
power of 2 dividing n or its half, whichever is a perfect square. Then the minimal possible gcd of x
and y is the square root ¢ of a - b. The number of different minimal representation with x <y is 2/~
where [is the number of different prime factors of the form 4k + 1 of n.

The algorithm first finds a square root r of —1 modulo n/(a-b), which must exist, and applies the
Euclidean algorithm to r and n. The first residues in the sequence that are smaller than /n/(a-b)
times c are a possible pair x and y.

Better descriptions of the algorithm and related topics can be found in [Wag90] and [Zag90].
Example

gap> TwoSquares(5);
[1, 2]

gap>
fail
gap>
Lo,
gap>
gap>
L3,
gap>
gap>
[2,
gap>
gap>
L5,
gap>

GAP - Reference Manual 208

TwoSquares(11); # there is no representation

TwoSquares(16);

4]

3 is the minimal possible gcd because 9 divides 45:
TwoSquares(45);

6 1

it is not [5,10] because their gcd is not minimal:
TwoSquares(125);

11 1]

[10,11] would be the other possible representation:
TwoSquares(13*17);

14]

TwoSquares (848654483879497562821); # argument is prime

[6305894639, 28440994650]

Chapter 16

Combinatorics

This chapter describes functions that deal with combinatorics. We mainly concentrate on two areas.
One is about selections, that is the ways one can select elements from a set. The other is about
partitions, that is the ways one can partition a set into the union of pairwise disjoint subsets.

16.1 Combinatorial Numbers
16.1.1 Factorial

> Factorial(n) (function)

returns the factorial n! of the positive integer n, which is defined as the product 1-2-3---n.
n! is the number of permutations of a set of n elements. 1/n! is the coefficient of x” in the formal
series exp(x), which is the generating function for factorial.

Example
gap> List([0..10], Factorial);

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
gap> Factorial(30);

265252859812191058636308480000000

PermutationsList (16.2.12) computes the set of all permutations of a list.

16.1.2 Binomial
> Binomial (Il 5 k) (function)

returns the binomial coefficient (Z) of integers n and k. This is defined by the conditions (Z) =0

for k <0, (2) =0 for k #0, (8) =1 and the relation (Z) = (";1) + (Z:}) for all n and k.

There are many ways of describing this function. For example, if n > 0 and 0 < k < n, then
(4) =n!/(k!(n—k)!) and for n < 0 and k > 0 we have (}) = (—1)F(7"*<1).

If n > 0 then (") is the number of subsets with k elements of a set with n elements. Also, (Z) is the

k
coefficient of x* in the polynomial (x + 1), which is the generating function for (") , hence the name.

Example
gap> # Knuth calls this the trademark of Binomial:

gap> List([0..4], k->Binomial(4, k));

209

GAP - Reference Manual 210

[1, 4,6, 4, 1]

gap> List([0..6], n->List([0..6], k->Binomial(n, k)));;
gap> # the lower triangle is called Pascal’s triangle:

gap> PrintArray(last);

rc ¢ o0, o0, o0, oO0, O, 01,
r ¢ 1, o0, O, O, O, O01,
r ¢ =2, 1, o0, ©0, 0, o071,
r 1+ 3, 3, 1, o0, 0, 01,
[1, 4, 6, 4, 1, o0, 01,
[1, 5, 10, 10, 5, 1, 01,
[1, 6, 15, 20, 15, 6, 111

gap> Binomial(50, 10);
10272278170

NrCombinations (16.2.3) is the generalization of Binomial for multisets. Combinations
(16.2.1) computes the set of all combinations of a multiset.

16.1.3 Bell

> Bell(n) (function)

returns the Bell number B(n). The Bell numbers are defined by B(0) = 1 and the recurrence
Bln+1) = Xio (})B(K).

B(n) is the number of ways to partition a set of n elements into pairwise disjoint nonempty subsets
(see PartitionsSet (16.2.16)). This implies of course that B(n) = Y}_S2(n,k) (see Stirling2
(16.1.6)). B(n)/n! is the coefficient of x”* in the formal series exp(exp(x) — 1), which is the generating

function for B(n).
Example

gap> List([0..6], n -> Bell(n));
[1, 1, 2, 5, 15, 52, 203]

gap> Bell(14);

190899322

16.1.4 Bernoulli

> Bernoulli(n) (function)

returns the n-th Bernoulli number By, which is defined by By = 1 and B, = — X~} ("I By/(n +
1).
B, /n! is the coefficient of x" in the power series of x/(exp(x) — 1). Except for By = —1/2 the

Bernoulli numbers for odd indices are zero.
Example

gap> Bernoulli(4);

-1/30

gap> Bernoulli(10);

5/66

gap> Bernoulli(12); # there is no simple pattern in Bernoulli numbers
-691/2730

gap> Bernoulli(50); # and they grow fairly fast
495057205241079648212477525/66

GAP - Reference Manual 211

16.1.5 Stirlingl

> Stirlingl(a, k) (function)

returns the Stirling number of the first kind S)(n,k) of the integers n and k. Stirling numbers
of the first kind are defined by §1(0,0) = 1, S;(n,0) = §1(0,k) = 0 if n,k # 0 and the recurrence
Si(nk)=(n—1)S1(n—1,k)+S1(n—1,k—1).

S1(n,k) is the number of permutations of n points with k cycles. Stirling numbers of the first
kind appear as coefficients in the series n! (z) =05 (n,k)x* which is the generating function for
Stirling numbers of the first kind. Note the similarity to x" = Y} _S2(n,k)k! (z) (see Stirling2
(16.1.6)). Also the definition of S; implies S; (n,k) = S2(—k,—n) if n,k < 0. There are many formulae
relating Stirling numbers of the first kind to Stirling numbers of the second kind, Bell numbers, and
Binomial coefficients.

Example
gap> # Knuth calls this the trademark of S_1:

gap> List([0..4], k -> Stirlingli(4, k));

[0, 6, 11, 6, 1]

gap> List([0..6], n->List([0..6], k->Stirlingli(n, k)));;

gap> # note the similarity with Pascal’s triangle for Binomial numbers
gap> PrintArray(last);

[1, 0, 0, 0, 0, 0, 01,
[0, 1, 0, 0, 0, 0, 01,
[0, 1, 1, 0, 0, 0, 01,
[0, 2, 3, 1, 0, 0, 01,
[0, 6, 11, 6, 1, 0, 01,
[0, 24, 50, 35, 10, 1, 01,
[0, 120, 274, 225, 85, 15, 111

gap> Stirling1(50,10);
101623020926367490059043797119309944043405505380503665627365376

16.1.6 Stirling2

> Stirling2 (n, k) (function)

returns the Stirling number of the second kind S»(n,k) of the integers n and k. Stirling numbers
of the second kind are defined by S,(0,0) = 1, S>(n,0) = S>(0,k) = 0 if n,k # 0 and the recurrence
Sa(n,k) =kSr(n—1,k)+S2(n—1,k—1).

S»(n,k) is the number of ways to partition a set of n elements into k pairwise disjoint nonempty
subsets (see PartitionsSet (16.2.16)). Stirling numbers of the second kind appear as coefficients
in the expansion of X" = Y}_(S2(n,k)k!(}). Note the similarity to n!(¥) = Yi_oS1(n,k)x* (see
Stirlingl (16.1.5)). Also the definition of S, implies S>(n,k) = Si(—k,—n) if n,k < 0. There are
many formulae relating Stirling numbers of the second kind to Stirling numbers of the first kind, Bell
numbers, and Binomial coefficients.

Example
gap> # Knuth calls this the trademark of S_2:

gap> List([0..4], k->Stirling2(4, k));

[o,1,7,6, 1]

gap> List([0..6], n->List([0..6], k->Stirling2(n, k)));;

gap> # note the similarity with Pascal’s triangle for Binomial numbers

GAP - Reference Manual 212

gap> PrintArray(last);
[[1, 0, 0, 0, 0, 0, 01,

(o, ¢ o0 O O, O, O01,

r o 1t 1, O, O, O, 01,

[0, 1, 3, 1, 0, 0, 01,

[0, 1, 7, 6, 1, 0, 01,

[0, 1, 15, 25, 10, 1, 01,

[o, 1, 31, 90, 65, 15, 111
gap> Stirling2(50, 10);
26154716515862881292012777396577993781727011

16.2 Combinations, Arrangements and Tuples

16.2.1 Combinations

> Combinations(mset[, kJ) (function)

returns the set of all combinations of the multiset mset (a list of objects which may contain the
same object several times) with k elements; if k is not given it returns all combinations of mset.

A combination of mset is an unordered selection without repetitions and is represented by a sorted
sublist of mset. If mset is a proper set, there are (|msket ‘) (see Binomial (16.1.2)) combinations with
k elements, and the set of all combinations is just the power set of mset, which contains all subsets
of mset and has cardinality 2/mS€t|.

To loop over combinations of a larger multiset use Iterator0fCombinations (16.2.2) which
produces combinations one by one and may save a lot of memory. Another memory efficient repre-

sentation of the list of all combinations is provided by Enumerator0fCombinations (16.2.2).

16.2.2 Iterator and enumerator of combinations

> IteratorOfCombinations(mset[, kJ) (function)
> EnumeratorOfCombinations (mset) (function)

IteratorOfCombinations returns an Iterator (30.8.1) for combinations (see Combinations
(16.2.1)) of the given multiset mset. If a non-negative integer k is given as second argument then
only the combinations with k entries are produced, otherwise all combinations.

EnumeratorOfCombinations returns an Enumerator (30.3.2) of the given multiset mset. Cur-
rently only a variant without second argument k is implemented.

The ordering of combinations from these functions can be different and also different from the list
returned by Combinations (16.2.1).

Example
gap> m:=[1..15];; Add(m, 15);
gap> NrCombinations(m) ;
49152
gap> i := 0;; for c in Combinations(m) do i := i+l; od;
gap> i;
49152
gap> cm := EnumeratorOfCombinations(m);;
gap> cm[1000];

GAP - Reference Manual 213

[1,2,3,6,7,8,9, 101
gap> Position(cm, [1,13,15,15]);
36866

16.2.3 NrCombinations

> NrCombinations(mset[, kJ) (function)

returns the number of Combinations (mset , k).
Example

gap> Combinations([1,2,2,3]);

tc 1,011,011, 21,01,2,21,[1,2,2,31,1I
(1,31, 21,002,211, [2,2,31,[2,31,[3

gap> # number of different hands in a game of poker:

gap> NrCombinations([1..52], 5);

2598960

1, 2’ 3]’
11

The function Arrangements (16.2.4) computes ordered selections without repetitions,
UnorderedTuples (16.2.6) computes unordered selections with repetitions, and Tuples (16.2.8)
computes ordered selections with repetitions.

16.2.4 Arrangements

> Arrangements(mset[, kJ) (function)

returns the set of arrangements of the multiset mset that contain k elements. If k is not given it
returns all arrangements of mset.

An arrangement of mset is an ordered selection without repetitions and is represented by a list
that contains only elements from mset, but maybe in a different order. If mset is a proper set there
are |mset|!/(|mset| —k)! (see Factorial (16.1.1)) arrangements with k elements.

16.2.5 NrArrangements

> NrArrangements(mset[, kJ) (function)

returns the number of Arrangements (mset , k).

As an example of arrangements of a multiset, think of the game Scrabble. Suppose you have the
six characters of the word "settle" and you have to make a four letter word. Then the possibilities
are given by

Example
gap> Arrangements(["S" R gt , ngn , ngn , nqn R ||en] R 4) ;
[[llell’ uen’ "1", ngn]’ [uen’ llell’ lllll, ngn], [llell’ nen, "S", nn],
nan nan nagn naen nan nan nen nyn nan nan nen nan
["e", "e", "s", "t"], ["e", "e", "t", "1"], ["e", "e", "t", "s"],
. 93 more possibilities ...
nyn nyn nyn nan nyn nyn nan nan nyn ngyn nan nyn
["t", "t", "1", "s" 1, ["t", "t", "s", "e" 1, ["t", "t", "s", "1"]]

Can you find the five proper English words, where "lets" does not count? Note that the fact that
the list returned by Arrangements (16.2.4) is a proper set means in this example that the possibilities
are listed in the same order as they appear in the dictionary.

GAP - Reference Manual 214

Example
gap> NrArrangements(["s","e","t","t","l","e"])’
523

The function Combinations (16.2.1) computes unordered selections without repetitions,
UnorderedTuples (16.2.6) computes unordered selections with repetitions, and Tuples (16.2.8)
computes ordered selections with repetitions.

16.2.6 UnorderedTuples

> UnorderedTuples(set, k) (function)

returns the set of all unordered tuples of length k of the set set.

An unordered tuple of length k of set is an unordered selection with repetitions of set and
is represented by a sorted list of length k containing elements from set. There are (lm‘zkfl) (see
Binomial (16.1.2)) such unordered tuples.

Note that the fact that UnorderedTuples returns a set implies that the last index runs fastest.
That means the first tuple contains the smallest element from set k times, the second tuple contains
the smallest element of set at all positions except at the last positions, where it contains the second
smallest element from set and so on.

16.2.7 NrUnorderedTuples

> NrUnorderedTuples(set, k) (function)

returns the number of UnorderedTuples(set , k).
As an example for unordered tuples think of a poker-like game played with 5 dice. Then each
possible hand corresponds to an unordered five-tuple from the set {1,2,...,6}.
Example

gap> NrUnorderedTuples([1..6], 5);
252
gap> UnorderedTuples([1..6], 5);
crc1,1,1,1, 171, 01,1,1,1,21, [
rt+,1,1,1,51, [1,1,1,1,61, I
100 more tuples ...
(1, 3,5,5,61, [1,3,5,6,61, [1,3,6,6,61, [1, 4, 4,4, 4],
100 more tuples ...
[3,3,5,565,51,[3,3,5,5,61,[3,3,5,6,61, [3,3,6,6,61,
. 32 more tuples ...
[5,5,5,6,61,[5,5,6,6,61,[5,6,6,6,61, [6,6,6,6,61]1

1, 1,1, 1,31, [
1 21, [

1,1, 1,1, 41,
B 31)1)23 B 131)1,233]3

The function Combinations (16.2.1) computes unordered selections without repetitions,
Arrangements (16.2.4) computes ordered selections without repetitions, and Tuples (16.2.8) com-
putes ordered selections with repetitions.

16.2.8 Tuples

> Tuples(set, k) (function)

GAP - Reference Manual 215

returns the set of all ordered tuples of length k of the set set.

An ordered tuple of length k of set is an ordered selection with repetition and is represented by
a list of length k containing elements of set. There are |set \k such ordered tuples.

Note that the fact that Tuples returns a set implies that the last index runs fastest. That means
the first tuple contains the smallest element from set k times, the second tuple contains the smallest
element of set at all positions except at the last positions, where it contains the second smallest
element from set and so on.

16.2.9 EnumeratorOfTuples

> Enumerator0fTuples(set, k) (function)

This function is referred to as an example of enumerators that are defined by functions but are not
constructed from a domain. The result is equal to that of Tuples(set, k). However, the entries
are not stored physically in the list but are created/identified on demand.

16.2.10 IteratorOfTuples

> IteratorOfTuples(set, k) (function)
For a set set and a positive integer k, Iterator0fTuples returns an iterator (see 30.8) of the

set of all ordered tuples (see Tuples (16.2.8)) of length k of the set set. The tuples are returned in
lexicographic order.

16.2.11 NrTuples

> NrTuples(set, k) (function)

returns the number of Tuples (set ,k).

Example
gap> Tuples([1,2,3], 2
(rf1,11, 01,21, 1L

(3,11, 03,21,
gap> NrTuples([1..10],
100000

31, 02,11, 02,21, [2,31,
3]

Tuples(set ,k) can also be viewed as the k-fold cartesian product of set (see Cartesian
(21.20.16)).

The function Combinations (16.2.1) computes unordered selections without repetitions,
Arrangements (16.2.4) computes ordered selections without repetitions, and finally the function
UnorderedTuples (16.2.6) computes unordered selections with repetitions.

16.2.12 PermutationsList

> PermutationsList (mset) (function)

PermutationsList returns the set of permutations of the multiset mset.

GAP - Reference Manual 216

A permutation is represented by a list that contains exactly the same elements as mset, but pos-
sibly in different order. If mset is a proper set there are |mset|! (see Factorial (16.1.1)) such
permutations. Otherwise if the first elements appears k; times, the second element appears k; times
and so on, the number of permutations is |mset|!/(k;'ky!...), which is sometimes called multinomial
coefficient.

16.2.13 NrPermutationsList

> NrPermutationsList (mset) (function)

returns the number of PermutationsList (mset).
Example

gap> PermutationsList([1,2,3]);

(f1,2,31,[01,3,21,[2,1,31,[2,3,11,1[3,1,21,
[3, 2,111

gap> PermutationsList([1,1,2,2]);

tf1,1,2,2131,01,2,1,271,0[1,2,2,11]1,[2,1,1, 21,
[2,1,2,1]1, [2,2,1,11]1

gap> NrPermutationsList([1,2,2,3,3,3,4,4,4,4]);

12600

The function Arrangements (16.2.4) is the generalization of PermutationsList (16.2.12) that
allows you to specify the size of the permutations. Derangements (16.2.14) computes permutations
that have no fixed points.

16.2.14 Derangements

> Derangements(list) (function)

returns the set of all derangements of the list 1ist.

A derangement is a fixpointfree permutation of 1ist and is represented by a list that contains
exactly the same elements as 1ist, but in such an order that the derangement has at no position the
same element as 1ist. If the list 1ist contains no element twice there are exactly |1ist|!(1/2!—
1/3'4+1/4!—..-4+(—1)"/n!) derangements.

Note that the ratio NrPermutationsList([1 .. n]) / NrDerangements([1 .. n
1), whichis n!/(n!(1/2! —1/3'+1/4! —--- 4+ (—1)"/n!)) is an approximation for the base of the
natural logarithm e = 2.7182818285 ..., which is correct to about n digits.

16.2.15 NrDerangements

> NrDerangements(list) (function)

returns the number of Derangements (list).
As an example of derangements suppose that you have to send four different letters to four different
people. Then a derangement corresponds to a way to send those letters such that no letter reaches the
intended person.
Example

gap> Derangements([1,2,3,4]);
[[2,1, 4,31, [2,3,4,11,0[2,4,1,31, 13,1, 4, 21,

GAP - Reference Manual

[33 4’ 1’ 2]) [3) 43 2) 1]) [4’ 1) 23 3]3 [43 3’ 1’ 2]’
[4, 3, 2,111
gap> NrDerangements([1..10]);

1334961

gap> Int(10"7*NrPermutationsList([1..10])/last);

27182816

gap> Derangements([1,1,2,2,3,3]);

([2,2,3,3,1,11,[2,3,1,3,1,21,[2,3,1,3,2,11,
[2,3,3,1,1,21,[02,3,3,1,2,11,1[3,2,1,3,1,21,
[3,2,1,3,2,11,[3,2,3,1,1, 21, [3,2,3,1,2,11,
[3, 3,1,1, 2,211

gap> NrDerangements([1,2,2,3,3,3,4,4,4,4]);

338

217

The function PermutationsList (16.2.12) computes all permutations of a list.

16.2.16 PartitionsSet

> PartitionsSet(set[, kJ)

(function)

returns the set of all unordered partitions of the set set into k pairwise disjoint nonempty sets. If

k is not given it returns all unordered partitions of set for all k.

An unordered partition of set is a set of pairwise disjoint nonempty sets with union set and is
represented by a sorted list of such sets. There are B(|set|) (see Bell (16.1.3)) partitions of the set

set and Sy (|set|, k) (see Stirling?2 (16.1.6)) partitions with k elements.

16.2.17 NrPartitionsSet

> NrPartitionsSet(set[, k])

returns the number of PartitionsSet(set k).

(function)

Example
gap> PartitionsSet([1,2,3]);
ccfte1,021,0311,C0C0+1,02,3111, (001,271,311,
(rt+,2,311, 001,31, 02111
gap> PartitionsSet([1,2,3,4], 2);
trc11, 02,383,411, 001,21, [3,411,
trt+, 2,31, 0411, [C1,2,41, 311,
(r+, 31, 02,411, 0[01,3,41,[211,
tf1,41, 02,3111
gap> NrPartitionsSet([1..6]);
203
gap> NrPartitionsSet([1..10], 3);
9330

Note that PartitionsSet (16.2.16) does currently not support multisets and that there is currently

no ordered counterpart.

GAP - Reference Manual 218

16.2.18 Partitions

> Partitions(al, kJ]) (function)

returns the set of all (unordered) partitions of the positive integer n into sums with k summands.
If k is not given it returns all unordered partitions of set for all k.

An unordered partition is an unordered sum n = p; 4+ p2 + --- + py of positive integers and is
represented by the list p = [p1, p2, ..., p], in nonincreasing order, i.e., p1 > p2 > ... > py. We write
p I n. There are approximately exp(7+/2/3n)/(4v/3n) such partitions, use NrPartitions (16.2.20)
to compute the precise number.

If you want to loop over all partitions of some larger n use the more memory efficient
IteratorOfPartitions (16.2.19).

It is possible to associate with every partition of the integer n a conjugacy class of permutations in
the symmetric group on n points and vice versa. Therefore p(n) :=NrPartitions(n) is the number
of conjugacy classes of the symmetric group on n points.

Ramanujan found the identities p(5i+4) =0mod 5, p(7i4+5) =0mod 7 and p(11i+6) = 0 mod
11 and many other fascinating things about the number of partitions.

16.2.19 IteratorOfPartitions

> IteratorOfPartitions(n) (function)

For a positive integer n, IteratorOfPartitions returns an iterator (see 30.8) of the set of parti-
tions of n (see Partitions (16.2.18)). The partitions of n are returned in lexicographic order.

16.2.20 NrPartitions

> NrPartitions(a/[, kJ) (function)

returns the number of Partitions(set k).

Example

gap> Partitions(7);

rrt,1,1,1,1,1,11,[2,1,1,1,1,11, [2,2,1,1, 11,
[2,2,2,11,[3,1,1,1,171,0[03,2,1,11,[3,2,21],
(33,11, 04,1,1,11,[04,2,11,04,31,[5,1,1],
[5,21, 06,11, [71]1

gap> Partitions(8, 3);

(03,383,211, [4,2,21,[4,3,11,1[5,2,11,1[6,1,11]

gap> NrPartitions(7);

15

gap> NrPartitions(100);

190569292

The function OrderedPartitions (16.2.21) is the ordered counterpart of Partitions (16.2.18).

16.2.21 OrderedPartitions

> OrderedPartitions(al[, kJ) (function)

GAP - Reference Manual 219

returns the set of all ordered partitions of the positive integer n into sums with k summands. If k
is not given it returns all ordered partitions of set for all k.

An ordered partition is an ordered sum n = p1 + p> +. ..+ pj of positive integers and is represented
by the list [p1, p2,.. ., pk]. There are totally 2"~! ordered partitions and (Zj) (see Binomial (16.1.2))
ordered partitions with k summands.

Do not call OrderedPartitions with an n much larger than 15, the list will simply become too
large.

16.2.22 NrOrderedPartitions

> NrOrderedPartitions(al[, kJ) (function)

returns the number of OrderedPartitions(set k).

Example

gap> OrderedPartltlons(5);

(f,1¢,1¢,1,273,01,1,1,27,01,1,2,171,[1,1,3],
(1,2,1,11,01,2,271,[1,3,11,[1,471,[2,1,1,1]1,
(2,1,21,02,2,11,[2,31,[3,1,11, 13,21,
(4,11, [51]

gap> OrderedPartltlons(6, 3);

1, 1,4131,01,2,31,01,3,21,0[1,4,11,0[2,1,3]1],
[2,2,2]1,[2,3,11,[(3,1,21,[3,2,11, [4,1,11]

gap> NrOrderedPartitions(20);
524288

The function Partitions (16.2.18) is the unordered counterpart of OrderedPartitions
(16.2.21).

16.2.23 PartitionsGreatestLE

> PartitionsGreatestLE(n, m) (function)

returns the set of all (unordered) partitions of the integer n having parts less or equal to the integer

16.2.24 PartitionsGreatestEQ

> PartitionsGreatestEQ(n, m) (function)

returns the set of all (unordered) partitions of the integer n having greatest part equal to the integer

16.2.25 RestrictedPartitions
> RestrictedPartitions(n, set[, kJ]) (function)
In the first form RestrictedPartitions returns the set of all restricted partitions of the positive

integer n into sums with k summands with the summands of the partition coming from the set set. If
k is not given all restricted partitions for all k are returned.

GAP - Reference Manual 220

A restricted partition is like an ordinary partition (see Partitions (16.2.18)) an unordered sum
n = pi+ p2+...+ py of positive integers and is represented by the list p = [p1, p2, ..., pk), in nonin-
creasing order. The difference is that here the p; must be elements from the set set, while for ordinary
partitions they may be elements from [1 .. n].

16.2.26 NrRestrictedPartitions

> NrRestrictedPartitions(n, set[, kJ) (function)

returns the number of RestrictedPartitions(n,set , k).

Example

gap> RestrictedPartitions(8, [1,3,5,7]);

(1, ¢,1,1¢,12,1,1,171,[3,1,1,1,1,1171, [3,3,1,11,
[5,1,1,11, 05,31, [7,11]1

gap> NrRestrictedPartitions(50,[1,2,5,10,20,50]);

451

The last example tells us that there are 451 ways to return 50 pence change using 1, 2, 5, 10, 20
and 50 pence coins.

16.2.27 SignPartition

> SignPartition (pi) (function)

returns the sign of a permutation with cycle structure pi.

This function actually describes a homomorphism from the symmetric group S, into the cyclic
group of order 2, whose kernel is exactly the alternating group A, (see SignPerm (42.4.1)). Partitions
of sign 1 are called even partitions while partitions of sign —1 are called odd.

Example

gap> SignPartition([6,5,4,3,2,1]1);
-1

16.2.28 AssociatedPartition

> AssociatedPartition(pi) (function)

AssociatedPartition returns the associated partition of the partition pi which is obtained by
transposing the corresponding Young diagram.

Example
gap> AssociatedPartition([4,2,1]);
[3,2,1, 1]

gap> AssociatedPartition([6]);

[1, 1,1, 1, 1, 1]

GAP - Reference Manual 221

16.2.29 PowerPartition

> PowerPartition(pi, k) (function)

PowerPartition returns the partition corresponding to the k-th power of a permutation with
cycle structure pi.

Each part / of pi is replaced by d = ged(/, k) parts I /d. So if pi is a partition of n then pi¥ also
is a partition of n. PowerPartition describes the power map of symmetric groups.

Example
gap> PowerPartition([6,5,4,3,2,1]1, 3);
[5,4,2,2,2,2,1,1,1, 1]

16.2.30 PartitionTuples

> PartitionTuples(a, r) (function)
PartitionTuples returns the list of all r-tuples of partitions which together form a partition of

r-tuples of partitions describe the classes and the characters of wreath products of groups with r
conjugacy classes with the symmetric group S,,.

16.2.31 NrPartitionTuples

> NrPartitionTuples(n, r) (function)

returns the number of PartitionTuples(n, r).

Example
gap> PartitionTuples(3, 2);
tcftt1,1,21, 01211, 001,21, 0211, 0C1),[1,111,
tt 1, 0141,1,211, 002,271,011, 0011, 21711,
tft231,0+311, 001,02, t11,0033, [11,
tr 1, 0311711
16.3 Fibonacci and Lucas Sequences
16.3.1 Fibonacci
> Fibonacci(n) (function)

returns the nth number of the Fibonacci sequence. The Fibonacci sequence F;, is defined by the
initial conditions F| = F, = 1 and the recurrence relation F,,1» = F, | + F;,. For negative n we define
F, = (—1)""'F_,, which is consistent with the recurrence relation.

Using generating functions one can prove that F, = ¢" — 1/¢", where ¢ is (v/541)/2, i.e., one
root of x> —x — 1 = 0. Fibonacci numbers have the property gcd(Fp,, F,) = Fycd(mn)- But a pair of
Fibonacci numbers requires more division steps in Euclid’s algorithm (see Gecd (56.7.1)) than any
other pair of integers of the same size. Fibonacci(k) is the special case Lucas(1,-1,k) [1] (see
Lucas (16.3.2)).

GAP - Reference Manual 222

Example

gap> Fibonacci(10);
55

gap> Fibonacci(35);
9227465

gap> Fibonacci(-10);
-55

16.3.2 Lucas

> Lucas(P, Q, k) (function)

returns the k-th values of the Lucas sequence with parameters P and @, which must be integers,
as a list of three integers. If k is a negative integer, then the values of the Lucas sequence may be
nonintegral rational numbers, with denominator roughly @"k.

Let a, B be the two roots of x> — Px+ Q then we define Lucas(P, @, k)[1] =U; = (a" —
B¥)/(oc— B) and Lucas(P, Q, k)[2] =V; = (a*+ B¥) and as a convenience Lucas(P, @,
k)[3]1 =0k

The following recurrence relations are easily derived from the definition Uy = 0,U; = 1,U; =
PU_1 — QUy_5 and Vo = 2,V| = P,V;, = PVy_1 — QV}_». Those relations are actually used to define
Lucas if @ = B.

Also the more complex relations used in Lucas can be easily derived Uy, = Uy Vi, Uai 11 = (PUoi +
V2k>/2 and Vo, = sz — 2Qk, Vogs1 = ((P2 — 4Q)U2k + PVZk)/2.

Fibonacci (k) (see Fibonacci (16.3.1)) is simply Lucas(1,-1,k) [1]. In an abuse of notation,
the sequence Lucas(1,-1,k) [2] is sometimes called the Lucas sequence.

Example
gap> List([0..10], i -> Lucas(1,-2,1i)[1]); # 27k - (-1)"k)/3
o, 1,1, 3, 5, 11, 21, 43, 85, 171, 341]
gap> List([0..10], i -> Lucas(1,-2,i)[2]); # 2°k + (-1)°k
[2, 1,5, 7, 17, 31, 65, 127, 257, 511, 1025]
gap> List([0..10], i -> Lucas(1,-1,i)[1]); # Fibonacci sequence
o, 1,1, 2, 3,5, 8, 13, 21, 34, 55]
gap> List([0..10], i -> Lucas(2,1,i)[1]); # the roots are equal
[o, 1,2, 3, 4, 5,6, 7,8, 9, 101
16.4 Permanent of a Matrix
16.4.1 Permanent
> Permanent (mat) (attribute)

returns the permanent of the matrix mat. The permanent is defined by Y., ¢ sym(n) [Ti= | mat[i][i"].

Note the similarity of the definition of the permanent to the definition of the determinant
(see DeterminantMat (24.4.4)). In fact the only difference is the missing sign of the permutation.
However the permanent is quite unlike the determinant, for example it is not multilinear or alternat-
ing. It has however important combinatorial properties.

GAP - Reference Manual

223

Example
gap> Permanent([[0,1,1,1],
> [1,0,1,1],
> [1,1,0,1],
> [1,1,1,0]]); # inefficient way to compute NrDerangements([1..4])
9

gap> # 24 permutations fit the projective plane of order 2:
gap> Permanent([[1,1,0,1,0,0,0],
> 0,1,1,0,1,0,0],

V V V V V
jn

o oo

HO“C)OI—‘

Oobb—bl—h

OO:—‘D—‘O

O ok
5

Chapter 17

Rational Numbers

The rationals form a very important field. On the one hand it is the quotient field of the integers (see
chapter 14). On the other hand it is the prime field of the fields of characteristic zero (see chapter 60).

The former comment suggests the representation actually used. A rational is represented as a
pair of integers, called numerator and denominator. Numerator and denominator are reduced, i.e.,
their greatest common divisor is 1. If the denominator is 1, the rational is in fact an integer and is
represented as such. The numerator holds the sign of the rational, thus the denominator is always
positive.

Because the underlying integer arithmetic can compute with arbitrary size integers, the rational
arithmetic is always exact, even for rationals whose numerators and denominators have thousands of
digits.

Example

gap> 2/3;

2/3

gap> 66/123; # numerator and denominator are made relatively prime

22/41

gap> 17/-13; # the numerator carries the sign;

-17/13

gap> 121/11; # rationals with denominator 1 (when canceled) are integers
11

17.1 Rationals: Global Variables

17.1.1 Rationals

> Rationals (global variable)
> IsRationals(obj) (filter)

Rationals is the field Q of rational integers, as a set of cyclotomic numbers, see Chapter 18 for
basic operations, Functions for the field Rationals can be found in the chapters 58 and 60.

IsRationals returns true for a prime field that consists of cyclotomic numbers —for example the
GAP object Rationals— and false for all other GAP objects.

Example
gap> Size(Rationals); 2/3 in Rationals;
infinity

224

GAP - Reference Manual 225

‘ true

17.2 Elementary Operations for Rationals

17.2.1 IsRat

> IsRat(obj) (Category)

Every rational number lies in the category IsRat, which is a subcategory of IsCyc (18.1.3).

Example
gap> IsRat(2/3);

true

gap> IsRat(17/-13);

true

gap> IsRat(11);

true

gap> IsRat(IsRat); # ‘IsRat’ is a function, not a rational
false

17.2.2 IsPosRat

> IsPosRat(obj) (Category)
Every positive rational number lies in the category IsPosRat.

17.2.3 IsNegRat

> IsNegRat(obj) (Category)
Every negative rational number lies in the category IsNegRat.

17.2.4 NumeratorRat

> NumeratorRat (rat) (function)

NumeratorRat returns the numerator of the rational rat. Because the numerator holds the sign
of the rational it may be any integer. Integers are rationals with denominator 1, thus NumeratorRat is
the identity function for integers.

Example

gap> NumeratorRat(2/3);

2

gap> # numerator and denominator are made relatively prime:
gap> NumeratorRat(66/123);

22
gap> NumeratorRat(17/-13); # numerator holds the sign of the rational
-17
gap> NumeratorRat(11); # integers are rationals with denominator 1

11

GAP - Reference Manual 226

17.2.5 DenominatorRat

> DenominatorRat (rat) (function)
DenominatorRat returns the denominator of the rational rat. Because the numerator holds the

sign of the rational the denominator is always a positive integer. Integers are rationals with the denom-
inator 1, thus DenominatorRat returns 1 for integers.

Example
gap> DenominatorRat(2/3);

3

gap> # numerator and denominator are made relatively prime:

gap> DenominatorRat(66/123);

41

gap> # the denominator holds the sign of the ratiomal:

gap> DenominatorRat(17/-13);

13

gap> DenominatorRat(11); # integers are rationals with denominator 1
1

17.2.6 Rat

> Rat(elm) (attribute)

Rat returns a rational number rat whose meaning depends on the type of elm.

If elm is a string consisting of digits >0, >1°, ..., 9 and ’-’ (at the first position), >/’ and the
decimal dot ’ . > then rat is the rational described by this string. If elm is a rational number, then Rat
returns elm. The operation String (27.7.6) can be used to compute a string for rational numbers, in
fact for all cyclotomics.

Example
gap> Rat("1/2"); Rat("35/14"); Rat("35/-27"); Rat("3.14159");
1/2

5/2

-35/27

314159/100000

17.2.7 Random (for rationals)

> Random(Rationals) (operation)

Random for rationals returns pseudo random rationals which are the quotient of two random inte-
gers. See the description of Random (14.2.12) for details. (Also see Random (30.7.1).)

Chapter 18

Cyclotomic Numbers

GAP admits computations in abelian extension fields of the rational number field Q, that is fields
with abelian Galois group over Q. These fields are subfields of cyclotomic fields Q(e,) where
e, = exp(2mi/n) is a primitive complex n-th root of unity. The elements of these fields are called
cyclotomics.

Information concerning operations for domains of cyclotomics, for example certain integral bases
of fields of cyclotomics, can be found in Chapter 60. For more general operations that take a field
extension as a —possibly optional- argument, e.g., Trace (58.3.5) or Coefficients (61.6.3), see
Chapter 58.

18.1 Operations for Cyclotomics
18.1.1 E
> E(n) (operation)

E returns the primitive n-th root of unity e, = exp(2mi/n). Cyclotomics are usually entered as
sums of roots of unity, with rational coefficients, and irrational cyclotomics are displayed in such a
way. (For special cyclotomics, see 18.4.)

Example
gap> E(9); E(9)73; E(6); E(12) / 3;
-E(9)~4-E(9)"7

E(3)

-E(3)"2

-1/3%E(12) "7

A particular basis is used to express cyclotomics, see 60.3; note that E(9) is not a basis element,
as the above example shows.

18.1.2 Cyclotomics

> Cyclotomics (global variable)

is the domain of all cyclotomics.

227

GAP - Reference Manual 228

Example
gap> E(9) in Cyclotomics; 37 in Cyclotomics; true in Cyclotomics;
true
true
false

As the cyclotomics are field elements, the usual arithmetic operators +, -, * and / (and ~ to take
powers by integers) are applicable. Note that ~ does not denote the conjugation of group elements, so
it is not possible to explicitly construct groups of cyclotomics. (However, it is possible to compute the
inverse and the multiplicative order of a nonzero cyclotomic.) Also, taking the k-th power of a root
of unity z defines a Galois automorphism if and only if & is coprime to the conductor (see Conductor
(18.1.7)) of z.

Example
gap> E(5) + E(3); (E(5) + E(5)~4) =~ 2; E(5) / E(3); E(5) * E(3);
-E(15)~2-2%E(15) "8-E(15)~11-E(15)~13-E(15)"14
-2%E(5)-E(5)"2-E(5)~3-2%E(5) "4

E(15)~13

E(15)"8

gap> Order(E(5)); Order(1+E(5));

5

infinity

18.1.3 IsCyclotomic

> IsCyclotomic(obj) (Category)
> T SCyC (Obj) (Category)

Every object in the family CyclotomicsFamily lies in the category IsCyclotomic. This covers
integers, rationals, proper cyclotomics, the object infinity (18.2.1), and unknowns (see Chapter 74).
All these objects except infinity (18.2.1) and unknowns lie also in the category IsCyc, infinity
(18.2.1) lies in (and can be detected from) the category IsInfinity (18.2.1), and unknowns lie in
IsUnknown (74.1.3).

Example
gap> IsCyclotomic(0); IsCyclotomic(1/2+E(3)); IsCyclotomic(infinity);
true

true

true

gap> IsCyc(0); IsCyc(1/2+E(3)); IsCyc(infinity);

true

true

false

18.1.4 IsIntegralCyclotomic

> IsIntegralCyclotomic(obj) (property)

A cyclotomic is called integral or a cyclotomic integer if all coefficients of its minimal polynomial
over the rationals are integers. Since the underlying basis of the external representation of cyclotomics

GAP - Reference Manual 229

is an integral basis (see 60.3), the subring of cyclotomic integers in a cyclotomic field is formed by
those cyclotomics for which the external representation is a list of integers. For example, square roots
of integers are cyclotomic integers (see 18.4), any root of unity is a cyclotomic integer, character values
are always cyclotomic integers, but all rationals which are not integers are not cyclotomic integers.

Example
gap> r:= ER(5); # The square root of 5 ...
E(5)-E(5)~2-E(5)"3+E(5)"4
gap> IsIntegralCyclotomic(r); # ... is a cyclotomic integer.
true
gap> r2:= 1/2 * r; # This is not a cyclotomic integer,

1/2%E(5)-1/2*E(5)~2-1/2*E(5) ~3+1/2+E(5) "4

gap> IsIntegralCyclotomic(r2);

false

gap> r3:= 1/2 x r - 1/2; # ... but this is one.
E(5)+E(5)"4

gap> IsIntegralCyclotomic(r3);

true

18.1.5 Int (for a cyclotomic)

> Int(cyc) (method)

The operation Int can be used to find a cyclotomic integer near to an arbitrary cyclotomic, by
applying Int (14.2.3) to the coefficients.

Example
gap> Int(E(5)+1/2*E(5)~2); Int(2/3*E(7)-3/2+E(4));
E(5)
-E(4)
18.1.6 String (for a cyclotomic)
> String(cyc) (method)

The operation String returns for a cyclotomic cyc a string corresponding to the way the cyclo-

tomic is printed by ViewObj (6.3.5) and Print0Obj (6.3.5).
Example
gap> String(E(5)+1/2+#E(5)~2); String(17/3);
"E(5)+1/2+E(5)~2"

l|17/3l|

18.1.7 Conductor (for a cyclotomic)

> Conductor(cyc) (attribute)
> Conductor (C) (attribute)

For an element cyc of a cyclotomic field, Conductor returns the smallest integer n such that cyc
is contained in the n-th cyclotomic field. For a collection C of cyclotomics (for example a dense list of
cyclotomics or a field of cyclotomics), Conductor returns the smallest integer n such that all elements
of C are contained in the n-th cyclotomic field.

GAP - Reference Manual 230

Example
gap> Conductor(0); Conductor(E(10)); Conductor(E(12));
1
5
12
18.1.8 AbsoluteValue
> AbsoluteValue(cyc) (attribute)

returns the absolute value of a cyclotomic number cyc. At the moment only methods for rational

numbers exist.
Example

gap> AbsoluteValue(-3);
3

18.1.9 RoundCyc

> RoundCyc(cyc) (operation)

is a cyclotomic integer z (see IsIntegralCyclotomic (18.1.4)) near to the cyclotomic cyc in the
following sense: Let c be the i-th coefficient in the external representation (see CoeffsCyc (18.1.10))
of cyc. Then the i-th coefficient in the external representation of zis Int(¢ + 1/2) or Int(c -
1/2), depending on whether c is nonnegative or negative, respectively.

Expressed in terms of the Zumbroich basis (see 60.3), rounding the coefficients of cyc w.r.t. this
basis to the nearest integer yields the coefficients of z.

Example

gap> RoundCyc(E(5)+1/2%E(5)~2); RoundCyc(2/3*E(7)+3/2*xE(4));

E(5)+E(5)"2

-2xE(28) ~3+E(28) ~4-2xE(28) ~11-2+E(28) ~15-2+E(28) ~19-2*E(28) =23
-2%E(28) 27

18.1.10 CoeffsCyc

> CoeffsCyc(cyc, N) (function)

Let cyc be a cyclotomic with conductor n (see Conductor (18.1.7)). If N is not a multiple of
n then CoeffsCyc returns fail because cyc cannot be expressed in terms of N-th roots of unity.
Otherwise CoeffsCyc returns a list of length N with entry at position j equal to the coefficient of
exp(2mi(j — 1)/N) if this root belongs to the N-th Zumbroich basis (see 60.3), and equal to zero
otherwise. So we have cyc = CoeffsCyc(cyc,N) * List([1..N], j -> E(W)~(j-1)).
Example

gap> cyc:= E(B5)+E(5)"2;

E(5)+E(5)"2

gap> CoeffsCyc(cyc, 5); CoeffsCyc(cyc, 15); CoeffsCyc(cyc, 7);
[0, 1,1, 0, 0]

o, -1, 0, 0, 0, 0, 0, 0, -1, 0, O, -1, 0, -1, 0]

fail

GAP - Reference Manual 231

18.1.11 DenominatorCyc

> DenominatorCyc(cyc) (function)

For a cyclotomic number cyc (see IsCyclotomic (18.1.3)), this function returns the smallest
positive integer n such that n * cyc is a cyclotomic integer (see IsIntegralCyclotomic (18.1.4)).
For rational numbers cyc, the result is the same as that of DenominatorRat (17.2.5).

18.1.12 ExtRepOfObj (for a cyclotomic)

> ExtRep0f0bj (cyc) (method)

The external representation of a cyclotomic cyc with conductor n (see Conductor (18.1.7) is the
list returned by CoeffsCyc (18.1.10), called with cyc and n.
Example
gap> ExtRep0f0bj(E(5)); CoeffsCyc(E(5), 5);
[0, 1,0, 0,0]
[0, 1, 0,0, 0]
gap> CoeffsCyc(E(5), 15);
to, o, o0,o0,0o0,0,0,0,-1,0,0,0,0,-1,0]

18.1.13 DescriptionOfRootOfUnity

> Description0fRoot0fUnity(root) (function)

Given a cyclotomic root that is known to be a root of unity (this is not checked),
Description0fRoot0fUnity returns a list [n,e] of coprime positive integers such that root = E(n)®
holds.

Example
gap> E(9); Description0fRootO0fUnity(E(9));
-E(9)~4-E(9)"7

[9,1]
gap> Description0fRoot0fUnity(-E(3));
[6, 5]

18.1.14 IsGaussInt

> IsGaussInt(x) (function)

IsGaussInt returns true if the object x is a Gaussian integer (see GaussianIntegers (60.5.1)),
and false otherwise. Gaussian integers are of the form a + b*E(4), where a and b are integers.

18.1.15 IsGaussRat

> IsGaussRat (x) (function)

IsGaussRat returns true if the object x is a Gaussian rational (see GaussianRationals
(60.1.3)), and false otherwise. Gaussian rationals are of the form a + b*E(4), where a and b are
rationals.

GAP - Reference Manual 232

18.1.16 DefaultField (for cyclotomics)

> DefaultField(list) (function)

DefaultField for cyclotomics is defined to return the smallest cyclotomic field containing the
given elements.
Note that Field (58.1.3) returns the smallest field containing all given elements, which need not

be a cyclotomic field. In both cases, the fields represent vector spaces over the rationals (see 60.3).
Example
gap> Field(E(5)+E(5)"4); DefaultField(E(5)+E(5)~4);
NF(5,[1, 4 1)

CF(5)

18.2 Infinity and negative Infinity

18.2.1 IsInfinity

> ISInfiIlity(Obj) (Category)
> IsNegInfinity(obj) (Category)
> infinity (global variable)
> -infinity (global variable)

infinity and -infinity are special GAP objects that lie in CyclotomicsFamily. They are
larger or smaller than all other objects in this family respectively. infinity is mainly used as return
value of operations such as Size (30.4.6) and Dimension (57.3.3) for infinite and infinite dimensional
domains, respectively.

Some arithmetic operations are provided for convenience when using infinity and -infinity
as top and bottom element respectively.

Example
gap> -infinity + 1;
-infinity
gap> infinity + infinity;
infinity

Often it is useful to distinguish infinity from “proper” cyclotomics. For that, infinity lies in the
category IsInfinity but not in IsCyc (18.1.3), and the other cyclotomics lie in the category IsCyc
(18.1.3) but not in IsInfinity.

Example
gap> s:= Size(Rationals);

infinity

gap> s = infinity; IsCyclotomic(s); IsCyc(s); IsInfinity(s);
true

true

false

true

gap> s in Ratiomnals; s > 17;

false

true

gap> Set([s, 2, s, E(17), s, 191);

[2, 19, E(17), infinity]

GAP - Reference Manual 233

18.3 Comparisons of Cyclotomics

To compare cyclotomics, the operators <, <=, =, >=, >, and <> can be used, the result will be true if
the first operand is smaller, smaller or equal, equal, larger or equal, larger, or unequal, respectively,
and false otherwise.

Cyclotomics are ordered as follows: The relation between rationals is the natural one, rationals are
smaller than irrational cyclotomics, and infinity (18.2.1) is the largest cyclotomic. For two irrational
cyclotomics with different conductors (see Conductor (18.1.7)), the one with smaller conductor is
regarded as smaller. Two irrational cyclotomics with same conductor are compared via their external
representation (see ExtRep0f0bj (18.1.12)).

For comparisons of cyclotomics and other GAP objects, see Section 4.12.

Example
gap> E(5) < E(6); # the latter value has conductor 3

false

gap> E(3) < E(3)"2; # both have conductor 3, compare the ext. repr.
false

gap> 3 < E(3); E(5) < E(7);

true

true

18.4 ATLAS Irrationalities

18.4.1 EB,EC,...,EH

EB(N) (function)
EC (N) (function)
ED(N) (function)
EE (N) (function)
EF(N) (function)
EG (N) (function)
EH(N) (function)

vV VvV VvV VvV VvV V V

For a positive integer N, let z = E(N) = exp(27i/N). The following so-called atomic irrationalities
(see [CCNT85, Chapter 7, Section 10]) can be entered using functions. (Note that the values are not
necessary irrational.)

EB(N) = by = (E¥3'Z°)/2 . ¥=1 (mod2)
EC) = oy = (E¥5'2")/3 . ¥=1 (mod3)
ED() = dy = (¥¥5'7')/4 . w=1 (mod4)
EE(N) = ey = Zﬁ\’__llzfs /5 ., N=1 (mod5)
EF(N) = fy = y;llzjﬁ /6 , N=1 (mod6)
B = gy = (XX')/7 . n=1 (mod7)
EH(N) = hy = Zﬁvz_llzjs /8 , N=1 (modS8)

(Note that in EC(NV), ..., EH(N), N must be a prime.)

GAP - Reference Manual 234

Example

gap> EB(5); EB(9);
E(5)+E(5)~4
1

18.4.2 EI and ER

>
>

EI (N) (function)
ER(N) (function)

For a rational number N, ER returns the square root /N of N, and EI returns /—N. By the chosen

embedding of cyclotomic fields into the complex numbers, ER returns the positive square root if N is
positive, and if N is negative then ER(N) = EI(-N) holds. In any case, EI(N) = E(4) * ER(N).

ER is installed as method for the operation Sqrt (31.12.5), for rational argument.
From a theorem of Gauss we know that by =

(=14+VN)/2 if N=1 (mod4)
(—=1+iVN)/2 if N=-1 (mod4)

So v/N can be computed from by, see EB (18.4.1).

Example

gap> ER(3); EI(3);

-E(12)"7+E(12)"11

E(3)-E(3)~2
18.4.3 EY,EX,...,ES
> EY (N [5 d]) (function)
> EX(N[, d]) (function)
> EW (N [5 d]) (function)
> EV(N[, d]) (function)
> EU (N [5 d]) (function)
> ET(N[, d]) (function)
> ES (N [5 d]) (function)

For the given integer N > 2, let N; denote the first integer with multiplicative order exactly k

modulo N, chosen in the order of preference

1,-1,2,-2,3, 3,4, —4,....
We define (with z = exp(27i/N))

EY(N) = yy = z+Z¢" (n=1N5)
EX(N) = xy = 2+ "+ (n=1N3)
EWN) = wy = z+Z" +77 42" (n=1Ny)
EVIN) = vy = 2+ 42"+ 47" (n=DNs)
EUN) = uy = z+2'+2"+...+7" (n=DNe)
ET(N) = ty = z+2"+%+...+2" (n=Ny)
ES(N) = sy = z+2'42"+...47" (n=1N)

GAP - Reference Manual 235

For the two-argument versions of the functions, see Section NK (18.4.5).

Example
gap> EY(5);

E(5)+E(5)~4

gap> EW(16,3); EW(17,2);

0

E(17)+E(17)~4+E(17) ~13+E(17)"16

1844 EM,EL,..,EJ

> EM(N[, d]) (function)
> EL(N[, d]) (function)
> EK(N[, d]) (function)
> EJ(N[, d]) (function)

Let N be an integer, N > 2. We define (with z = exp(27i/N))

EM(N) = my = z-—2" (n="Nz)
EL(N) = Iy = z—2"4+7"—7" (n=Ny)
EK(N) = ky = z—2"4...—2" (n=Ne)
EJ(N) = jy = ="+ =" (n=DNy)

For the two-argument versions of the functions, see Section NK (18.4.5).

18.4.5 NK
> NK (N 5 k 5 d) (function)
Let N E{d) be the (d + 1)-th integer with multiplicative order exactly k modulo N, chosen in the

(d)

order of preference defined in Section 18.4.3; NK returns N~ ’; if there is no integer with the required
multiplicative order, NK returns fail.

We write NI; = N%?),N’k = Ng{l),N’l’{ = Ng) and so on.

The algebraic numbers

1 2 . .
y;\[:yﬁ\[%y/](] :yﬁv)a'-'7x3\[7x3(]7-"7J}\[7]}\,]7"'

are obtained on replacing Ny in the definitions in the sections 18.4.3 and 18.4.4 by N/ ,N’l’{, ...; they
can be entered as

EY(d) = WO
EX(d) = x
EI(d) = 0

GAP - Reference Manual 236

18.4.6 AtlasIrrationality

> AtlasIrrationality(irratname) (function)

Let irratname be a string that describes an irrational value as a linear combination in terms of the
atomic irrationalities introduced in the sections 18.4.1, 18.4.2, 18.4.3, 18.4.4. These irrational values
are defined in [CCN™85, Chapter 6, Section 10], and the following description is mainly copied from
there. If gy is such a value (e.g. y5,) then linear combinations of algebraic conjugates of gy are
abbreviated as in the following examples:

2qN+345-4&7+&9 means 2qy + 3¢5 — 44y + 45
4qN&3&5&7-3%4 means 4(gn+qy + 4 +q¥) =3
4qN*3&5+&7 means 4(qy’ +q%) + gy

To explain the “ampersand” syntax in general we remark that “&k” is interpreted as ¢%¥, where gy
is the most recently named atomic irrationality, and that the scope of any premultiplying coefficient is
broken by a + or — sign, but not by & or k. The algebraic conjugations indicated by the ampersands
apply directly to the atomic irrationality gy, even when, as in the last example, gy first appears with
another conjugacy *k.

Example
gap> AtlasIrrationality("b7%3");
E(7)~3+E(7)"5+E(7)"6

gap> AtlasIrrationality("y’’’24");
E(24)-E(24)"19

gap> AtlasIrrationality("-3y’’’24%13&5");
3*E(8)-3+E(8) "3

gap> AtlasIrrationality("3y’’’24x13-2&5");
-3*E(24) -2+E(24) ~11+2+E(24) ~17+3+E(24) ~19
gap> AtlasIrrationality("3y’’’24%13-&5");
-3*E(24)-E(24) ~11+E(24)~17+3*E(24) 19

gap> AtlasIrrationality("3y’’’24x13-4&5&7") ;
-T*E(24) -4*E(24) ~11+4%E(24) ~17+7*E(24) ~19
gap> AtlasIrrationality("3y’’’24&7");
6*E(24) -6+E(24)~19

18.5 Galois Conjugacy of Cyclotomics

18.5.1 GaloisCyc (for a cyclotomic)

> GaloisCyc (cyc, k) (operation)
> GaloiSCyC(liSt, k) (operation)

For a cyclotomic cyc and an integer k, GaloisCyc returns the cyclotomic obtained by raising the
roots of unity in the Zumbroich basis representation of cyc to the k-th power. If k is coprime to the
integer n, GaloisCyc(., k) acts as a Galois automorphism of the n-th cyclotomic field (see 60.4);
to get the Galois automorphisms themselves, use GaloisGroup (58.3.1).

The complex conjugate of cyc is GaloisCyc(cyc, -1), which can also be computed using
ComplexConjugate (18.5.2).

For a list or matrix 1ist of cyclotomics, GaloisCyc returns the list obtained by applying
GaloisCyc to the entries of 1ist.

GAP - Reference Manual 237

18.5.2 ComplexConjugate

> ComplexConjugate(z) (attribute)
> RealPart(z) (attribute)
> ImaginaryPart(z) (attribute)

For a cyclotomic number z, ComplexConjugate returns GaloisCyc(z, -1), see GaloisCyc
(18.5.1). For a quaternion z = cye+ cpi+c3j + c4k, ComplexConjugate returns cje — cpi — c3j — cak,
see IsQuaternion (62.8.8).

When ComplexConjugate is called with a list then the result is the list of return values of
ComplexConjugate for the list entries in the corresponding positions.

When ComplexConjugate is defined for an object z then RealPart and ImaginaryPart re-
turn (z + ComplexConjugate(z)) / 2and (z - ComplexConjugate(z)) / 2 i,respec-
tively, where i denotes the corresponding imaginary unit.

Example

gap> GaloisCyc(E(5) + E(5)°4, 2);

E(5)"2+E(5)"3

gap> GaloisCyc(E(5), -1); # the complex conjugate
E(5)"4

gap> GaloisCyc(E(5) + E(5)"4, -1); # this value is real
E(5)+E(5)"4

gap> GaloisCyc(E(15) + E(15)°4, 3);

E(5)+E(5)"4

gap> ComplexConjugate(E(7));

E(7)"6

18.5.3 StarCyc

> StarCyc(cyc) (function)

If the cyclotomic cyc is an irrational element of a quadratic extension of the rationals then
StarCyc returns the unique Galois conjugate of cyc that is different from cyc, otherwise fail is
returned. In the first case, the return value is often called cyc* (see 71.13).

Example
gap> StarCyc(EB(5)); StarCyc(E(5));
E(5)~2+E(5)"3

fail

18.5.4 Quadratic

> Quadratic(cyc) (function)

Let cyc be a cyclotomic integer that lies in a quadratic extension field of the rationals. Then we
have cyc= (a+ by/n)/d, for integers a, b, n, d, such that d is either 1 or 2. In this case, Quadratic
returns a record with the components a, b, root, d, ATLAS, and display; the values of the first four
are a, b, n, and d, the ATLAS value is a (not necessarily shortest) representation of cyc in terms of
the Atlas irrationalities by, i|,|, 7|, and the display value is a string that expresses cyc in GAP
notation, corresponding to the value of the ATLAS component.

GAP - Reference Manual 238

If cyc is not a cyclotomic integer or does not lie in a quadratic extension field of the rationals then
fail is returned.

If the denominator d is 2 then necessarily 7 is congruent to 1 modulo 4, and r,, i,, are not possible;
we have cyc = x + y * EB(root) withy = b,x = Ca+b) / 2.

If d = 1, we have the possibilities i) forn < —1,a+bxiforn=—1, a+bxr, for n > 0.
Furthermore if 7 is congruent to 1 modulo 4, also cyc = (a+b) +2 b * b}, is possible; the shortest
string of these is taken as the value for the component ATLAS.

Example
gap> Quadratic(EB(5)); Quadratic(EB(27));
rec(ATLAS := "b5", a := -1, b :=1, d := 2,
display := "(-1+Sqrt(5))/2", root := 5)
rec(ATLAS := "1+3b3", a := -1, b := 3, d := 2,
display := "(-1+3*Sqrt(-3))/2", root := -3)
gap> Quadratic(0); Quadratic(E(5));
rec(ATLAS := "0", a := 0, b := 0, d := 1, display := "0", root := 1)
fail
18.5.5 GaloisMat
> GaloisMat (mat) (attribute)

Let mat be a matrix of cyclotomics. GaloisMat calculates the complete orbits under the operation
of the Galois group of the (irrational) entries of mat, and the permutations of rows corresponding to
the generators of the Galois group.

If some rows of mat are identical, only the first one is considered for the permutations, and a
warning will be printed.

GaloisMat returns a record with the components mat, galoisfams, and generators.

mat a list with initial segment being the rows of mat (not shallow copies of these rows); the list
consists of full orbits under the action of the Galois group of the entries of mat defined above.
The last rows in the list are those not contained in mat but must be added in order to complete
the orbits; so if the orbits were already complete, mat and mat have identical rows.

galoisfams
a list that has the same length as the mat component, its entries are either 1, 0, -1, or lists.

galoisfams[i] = 1
means that mat [i] consists of rationals, i.e., [mat[i]] forms an orbit;

galoisfams[i] = -1
means that mat [i] contains unknowns (see Chapter 74); in this case [mat[i]] is re-
garded as an orbit, too, even if mat [i] contains irrational entries;

galoisfams[i] = [I},1]
(a list) means that mat [i] is the first element of its orbit in mat, /; is the list of positions
of rows that form the orbit, and /, is the list of corresponding Galois automorphisms (as
exponents, not as functions); so we have mat[l; [j]][k] = GaloisCyc(mat[i][k],Lx[j]);

galoisfams[i] = 0
means that mat [i] is an element of a nontrivial orbit but not the first element of it.

GAP - Reference Manual 239

generators
a list of permutations generating the permutation group corresponding to the action of the Galois
group on the rows of mat.

Example
gap> GaloisMat([[E(3), E(4) 11);
rec(galoisfams := [[[1, 2, 3,411, [1,7,5,1111,0,0,01,
generators := [(1,2)(3,4), (1,3)(2,4) 1,
mat := [[E(3), E(4) 1, [E(3), -E(4) 1, [E(3)"2, E4 1,
[E(®~2, -E4) 1 1)
gap> GaloisMat([[1, 1, 1
rec(galoisfams := [
generators := [
mat := [[1, 1,

1, [1, EG3), E@)21 1);
2,31, 01,211,011,

1, [
31,
1, I

L
(2,
11, [1, E(3, E("21, [1, EM)"2, ER)11)

18.5.6 RationalizedMat

> RationalizedMat (mat) (attribute)

returns the list of rationalized rows of mat, which must be a matrix of cyclotomics. This is the
set of sums over orbits under the action of the Galois group of the entries of mat (see GaloisMat
(18.5.5)), so the operation may be viewed as a kind of trace on the rows.

Note that no two rows of mat should be equal.
Example
gap>mat:= [[1, 1, 11, [1, E(3), E(3)"2 1], [1, E(3)"2, E(3) 1 1;;
gap> RationalizedMat(mat);

(f1,1,11, 2, -1, -111

18.6 Internally Represented Cyclotomics

The implementation of an internally represented cyclotomic is based on a list of length equal to its
conductor. This means that the internal representation of a cyclotomic does noft refer to the smallest
number field but the smallest cyclotomic field containing it. The reason for this is the wish to reflect
the natural embedding of two cyclotomic fields into a larger one that contains both. With such embed-
dings, it is easy to construct the sum or the product of two arbitrary cyclotomics (in possibly different
fields) as an element of a cyclotomic field.

The disadvantage of this approach is that the arithmetical operations are quite expensive, so the use
of internally represented cyclotomics is not recommended for doing arithmetics over number fields,
such as calculations with matrices of cyclotomics. But internally represented cyclotomics are good
enough for dealing with irrationalities in character tables (see chapter 71).

For the representation of cyclotomics one has to recall that the n-th cyclotomic field Q(e,) is
a vector space of dimension ¢(n) over the rationals where ¢ denotes Euler’s phi-function (see Phi
(15.2.2)).

A special integral basis of cyclotomic fields is chosen that allows one to easily convert arbitrary
sums of roots of unity into the basis, as well as to convert a cyclotomic represented w.r.t. the basis into
the smallest possible cyclotomic field. This basis is accessible in GAP, see 60.3 for more information
and references.

GAP - Reference Manual 240

Note that the set of all n-th roots of unity is linearly dependent for n > 1, so multiplication is not
the multiplication of the group ring Q(e,); given a Q-basis of Q(e,) the result of the multiplication
(computed as multiplication of polynomials in e,, using (e,)" = 1) will be converted to the basis.

Example
gap> E(5) * E(5)~2; (E(5) + E(5)"4) * E(5)"2;
E(5)"3

E(5)+E(5)"3

gap> (E(5) + E(5)~4) * E(5);
-E(5)-E(5)"3-E(5)~4

An internally represented cyclotomic is always represented in the smallest cyclotomic field it
is contained in. The internal coefficients list coincides with the external representation returned by
ExtRep0fObj (18.1.12).

To avoid calculations becoming unintentionally very long, or consuming very large amounts of
memory, there is a limit on the conductor of internally represented cyclotomics, by default set to
one million. This can be raised (although not lowered) using SetCyclotomicsLimit (18.6.1) and
accessed using GetCyclotomicsLimit (18.6.1). The maximum value of the limit is 2%® — 1 on 32
bit systems, and 232 on 64 bit systems. So the maximal cyclotomic field implemented in GAP is not
really the field Q.

It should be emphasized that one disadvantage of representing a cyclotomic in the smallest cy-
clotomic field (and not in the smallest field) is that arithmetic operations in a fixed small extension
field of the rational number field are comparatively expensive. For example, take a prime integer p
and suppose that we want to work with a matrix group over the field Q(,/p). Then each matrix entry
could be described by two rational coefficients, whereas the representation in the smallest cyclotomic
field requires p — 1 rational coefficients for each entry. So it is worth thinking about using elements
in a field constructed with AlgebraicExtension (67.1.1) when natural embeddings of cyclotomic
fields are not needed.

18.6.1 SetCyclotomicsLimit

> SetCyclotomicsLimit(newlimit) (function)
> GetCyclotomicsLimit () (function)

GetCyclotomicsLimit returns the current limit on conductors of internally represented cyclo-
tomic numbers

SetCyclotomicsLimit can be called to increase the limit on conductors of internally represented
cyclotomic numbers. Note that computing in large cyclotomic fields using this representation can be
both slow and memory-consuming, and that other approaches may be better for some problems. See
18.6.

Chapter 19

Floats

Starting with version 4.5, GAP has built-in support for floating-point numbers in machine format, and
allows package to implement arbitrary-precision floating-point arithmetic in a uniform manner. For
now, one such package, Float exists, and is based on the arbitrary-precision routines in mpfr.

A word of caution: GAP deals primarily with algebraic objects, which can be represented exactly
in a computer. Numerical imprecision means that floating-point numbers do not form a ring in the
strict GAP sense, because addition is in general not associative ((1.0e-100+1.0)-1.0 is not the
same as 1.0e-100+(1.0-1.0), in the default precision setting).

Most algorithms in GAP which require ring elements will therefore not be applicable to floating-
point elements. In some cases, such a notion would not even make any sense (what is the greatest
common divisor of two floating-point numbers?)

19.1 A sample run

Floating-point numbers can be input into GAP in the standard floating-point notation:

Example
gap> 3.14;

3.14

gap> last~2/6;

1.64327

gap> h := 6.62606896e-34;
6.62607e-34

gap> pi := 4xAtan(1.0);
3.14159

gap> hbar := h/(2%pi);
1.05457e-34

Floating-point numbers can also be created using Float, from strings or rational numbers; and
can be converted back using String,Rat, Int.

GAP allows rational and floating-point numbers to be mixed in the elementary operations
+,-,%*,/. However, floating-point numbers and rational numbers may not be compared. Conversions
are performed using the creator Float:

Example
gap> Float("3.1416");
3.1416

241

GAP - Reference Manual 242

gap> Float(355/113);
3.14159

gap> Rat(last);
355/113

gap> Rat(0.33333);
1/3

gap> Int(1.e10);
10000000000

gap> Int(1.e20);
100000000000000000000
gap> Int(1.e30);
1000000000000000019884624838656

19.2 Methods

Floating-point numbers may be directly input, as in any usual mathematical software or language;
with the exception that every floating-point number must contain a decimal digit. Therefore .1, . 1lel,
-.999 etc. are all valid GAP inputs.

Floating-point numbers so entered in GAP are stored as strings. They are converted to floating-
point when they are first used. This means that, if the floating-point precision is increased, the con-
stants are reevaluated to fit the new format.

Floating-point numbers may be followed by an underscore, as in 1._. This means that they are
to be immediately converted to the current floating-point format. The underscore may be followed by
a single letter, which specifies which format/precision to use. By default, GAP has a single floating-
point handler, with fixed (53 bits) precision, and its format specifier is 1’ as in 1._1. Higher-
precision floating-point computations is available via external packages; float for example.

A record, FLOAT (19.2.5), contains all relevant constants for the current floating-point for-
mat; see its documentation for details. Typical fields are FLOAT.MANT_DIG=53, the constant
FLOAT.VIEW_DIG=6 specifying the number of digits to view, and FLOAT.PI for the constant . The
constants have the same name as their C counterparts, except for the missing initial DBL_ or M_.

Floating-point numbers may be created using the single function Float (19.2.1), which
accepts as arguments rational, string, or floating-point numbers. Floating-point numbers
may also be created, in any floating-point representation, using NewFloat (19.2.1) as in
NewFloat (IsIEEE754FloatRep,355/113), by supplying the category filter of the desired new
floating-point number; or using MakeFloat (19.2.1) as in NewFloat (1.0,355/113), by supplying a
sample floating-point number.

Floating-point numbers may also be converted to other GAP formats using the usual commands
Int (14.2.3), Rat (17.2.6), String (27.7.6).

Exact conversion to and from floating-point format may be done using external representations.
The "external representation” of a floating-point number x is a pair [m,e] of integers, such that
x=m*2"~ (-1+e-LogInt (AbsInt(m),2)). Conversion to and from external representation is per-

formed as usual using ExtRep0£f0bj (79.16.1) and 0bjByExtRep (79.16.1):
Example

gap> ExtRep0f0bj(3.14);

[7070651414971679, 2]

gap> ObjByExtRep(IEEE754FloatsFamily,last);
3.14

GAP - Reference Manual 243

Computations with floating-point numbers never raise any error. Division by zero is allowed, and
produces a signed infinity. Illegal operations, such as 0./0., produce NaN’s (not-a-number); this is
the only floating-point number x such that not EqFloat (x+0.0,x).

The IEEE754 standard requires NaN to be non-equal to itself. On the other hand, GAP requires
every object to be equal to itself. To respect the IEEE754 standard, the function EqFloat (19.2.6)
should be used instead of =.

The category a floating-point belongs to can be checked using the filters IsFinite (30.4.2),
IsPInfinity (19.2.9), IsNInfinity (19.2.9), IsXInfinity (19.2.9), IsNaN (19.2.9).

Comparisons between floating-point numbers and rationals are explicitly forbidden. The rationale
is that objects belonging to different families should in general not be comparable in GAP. Floating-
point numbers are also approximations of real numbers, and don’t follow the same rules; consider for
example, using the default GAP implementation of floating-point numbers,

Example

gap> 1.0/3.0 = Float(1/3);

true

gap> (1.0/3.0)°5 = Float((1/3)°5);

false
19.2.1 Float creators
> Float(obj) (function)
> NewFloat(filter, Obj) (operation)
> MakeFloat (sample, obj, obj) (operation)

Returns: A new floating-point number, based on obj

This function creates a new floating-point number.

If obj is a rational number, the created number is created with sufficient precision so that
the number can (usually) be converted back to the original number (see Rat (Reference: Rat)
and Rat (17.2.6)). For an integer, the precision, if unspecified, is chosen sufficient so that
Int (Float (obj))=obj always holds, but at least 64 bits.

obj may also be a string, which may be of the form "3.14e0" or ".314e1" or ".31401" etc.

An option may be passed to specify, it bits, a desired precision. The format is
Float("3.14":PrecisionFloat:=1000) to create a 1000-bit approximation of 3.14.
In particular, if obj is already a floating-point number, then

Float(obj:PrecisionFloat:=prec) creates a copy of obj with a new precision. prec

19.2.2 Rat (for floats)

> Rat (f) (attribute)

Returns: A rational approximation to f

This command constructs a rational approximation to the floating-point number f. Of course, it
is not guaranteed to return the original rational number f was created from, though it returns the most
‘reasonable’ one given the precision of f.

Two options control the precision of the rational approximation: In the form
Rat (f :maxdenom:=md,maxpartial:=mp), the rational returned is such that the denominator
is at most md and the partials in its continued fraction expansion are at most mp. The default values
are maxpartial :=10000 and maxdenom:=2"(precision/2).

GAP - Reference Manual 244

19.2.3 Cyec (for floats)

> Cyc(f[, degreel) (attribute)

Returns: A cyclotomic approximation to £

This command constructs a cyclotomic approximation to the floating-point number f. Of course,
it is not guaranteed to return the original rational number f was created from, though it returns the
most ‘reasonable’ one given the precision of £. An optional argument degree specifies the maximal
degree of the cyclotomic to be constructed.

The method used is LLL lattice reduction.

19.2.4 SetFloats
> SetFloats(rec[, bits][, installl) (function)
Installs a new interface to floating-point numbers in GAP, optionally with a desired precision

bits in binary digits. The last optional argument install is a boolean value; if false, it only installs
the eager handler and the precision for the floateans, without making them the default.

19.2.5 FLOAT (constants)

> FLOAT (global variable)

This record contains useful floating-point constants:

DECIMAL_DIG
Maximal number of useful digits;

DIG Number of significant digits;

VIEW_DIG
Number of digits to print in short view;

EPSILON
Smallest number such that 1 #£ 1+ ¢;

MANT_DIG
Number of bits in the mantissa;

MAX
Maximal representable number;

MAX_10_EXP
Maximal decimal exponent;

MAX_EXP
Maximal binary exponent;

MIN
Minimal positive representable number;

GAP - Reference Manual 245

MIN_10_EXP
Minimal decimal exponent;

MIN_EXP
Minimal exponent;

INFINITY
Positive infinity;

NINFINITY
Negative infinity;

NAN
Not-a-number,

as well as mathematical constants E, LOG2E, LOG10E, LN2, LN10, PI, PI_2, PI_4, 1_PI, 2_PI,
2_SQRTPI, SQRT2, SQRT1_2.

19.2.6 EqFloat

> EqFloat(x, y) (operation)
Returns: Whether the floateans x and y are equal
This function compares two floating-point numbers, and returns true if they are equal, and false
otherwise; with the exception that NaN is always considered to be different from itself.

19.2.7 PrecisionFloat

> PrecisionFloat(x) (attribute)
Returns: The precision of x
This function returns the precision, counted in number of binary digits, of the floating-point num-
ber x.

19.2.8 SignBit

> SignBit(X) (attribute)
> SignFloat (x) (attribute)

Returns: The sign of x.

The first function SignBit returns the sign bit of the floating-point number x: true if x is negative
(including -0.) and false otherwise.

The second function SignFloat returns the integer -1 if x<0, 0 if x=0 and 1 if x>0.

19.2.9 Infinity testers

> IsPInfinity(x) (property)
> IsNInfinity(x) (property)
> IsXInfinity(x) (property)
> IsFinite(x) (property)
> IsNaN(x) (property)

GAP - Reference Manual 246

Returns true if the floating-point number x is respectively +oo, —oo, F-0o, finite, or ‘not a number’,
such as the result of 0.0/0.0.

19.2.10 Standard mathematical operations

> Cos (f) (operation)
> Sin(f) (operation)
> Tan(f) (operation)
> Sec(f) (operation)
> Csc(f) (operation)
> Cot(f) (operation)
> Asin(f) (operation)
> Acos (f) (operation)
> Atan(f) (operation)
> Cosh (f) (operation)
> Sinh(f) (operation)
> Tanh (f) (operation)
> Sech(f) (operation)
> Csch(f) (operation)
> Coth(f) (operation)
> Asinh(f) (operation)
> Acosh (f) (operation)
> Atanh(f) (operation)
> Lo g (f) (operation)
> Log2 () (operation)
> LOg 10 (f) (operation)
> Loglp () (operation)
> EXp (f) (operation)
> Exp2(f) (operation)
> Expl0 () (operation)
> Expml () (operation)
> CubeRoot (£) (operation)
> Square (f) (operation)
> Ceil(f) (operation)
> Floor (f) (operation)
> Round (f) (operation)
> Trunc (f) (operation)
> Atan?2 (y, x) (operation)
> FI’EXp (f) (operation)
> LdExp (f, exp) (operation)
> AbsoluteValue (f) (operation)
> Norm(f) (operation)
> Hypothenuse(x, y) (operation)
> Frac (f) (operation)
> SinCos(f) (operation)
> Erf (f) (operation)
> Zeta(f) (operation)

GAP - Reference Manual 247

> Gamma (f) (operation)

Standard math functions.

19.3 High-precision-specific methods

GAP provides a mechanism for packages to implement new floating-point numerical interfaces. The
following describes that mechanism, actual examples of packages are documented separately.
A package must create a record with fields (all optional)

creator
a function converting strings to floating-point;

eager
a character allowing immediate conversion to floating-point;

objbyextrep
a function creating a floating-point number out of a list [mantissa,exponent];

filter
a filter for the new floating-point objects;

constants
a record containing numerical constants, such as MANT_DIG, MAX, MIN, NAN.

The package must install methods Int, Rat, String for its objects, and creators
NewFloat(filter,IsRat), NewFloat (IsString).

It must then install methods for all arithmetic and numerical operations: PLUS, Exp, ...

The user chooses that implementation by calling SetFloats (19.2.4) with the record as argument,
and with an optional second argument requesting a precision in binary digits.

19.4 Complex arithmetic

Complex arithmetic may be implemented in packages, and is present in float. Complex numbers are
treated as usual numbers; they may be input with an extra "i" as in -0.5+0.8661i. They may also be
created using NewFloat (19.2.1) with three arguments: the float filter, the real part, and the imaginary
part.

Methods should then be implemented for Norm, RealPart, ImaginaryPart,
ComplexConjugate, ...

19.4.1 Argument (for complex floats)

> Argument (z) (attribute)

Returns the argument of the complex number z, namely the value
Atan2(ImaginaryPart(z) ,RealPart(z)).

GAP - Reference Manual 248

19.5 Interval-specific methods

Interval arithmetic may also be implemented in packages. Intervals are in fact efficient implementa-
tions of sets of real numbers. The only non-trivial issue is how they should be compared. The standard
EQ tests if the intervals are equal; however, it is usually more useful to know if intervals overlap, or
are disjoint, or are contained in each other.

Note the usual convention that intervals are compared as in [a,b] < [c,d] if and only if a < ¢ and
b<d.

19.5.1 Sup

> Sup(x) (attribute)

Returns the supremum of the interval x.

19.5.2 Inf

> Inf (X) (attribute)

Returns the infimum of the interval x.

19.5.3 Mid

> Mid(x) (attribute)

Returns the midpoint of the interval x.

19.5.4 AbsoluteDiameter

> AbsoluteDiameter (x) (attribute)
> Diameter(x) (attribute)

Returns the absolute diameter of the interval x, namely the difference Sup (x) -Inf (x).

19.5.5 RelativeDiameter

> RelativeDiameter (x) (attribute)

Returns the relative diameter of the interval X, namely
(Sup(x) -Inf(x))/AbsoluteValue (Min(x)).

19.5.6 IsDisjoint

> IsDisjoint (x1, x2) (operation)

Returns true if the two intervals x1, x2 are disjoint.

GAP - Reference Manual 249

19.5.7 IsSubset (for interval floats)

> IsSubset (Xl, x2) (operation)

Returns true if the interval x1 contains x2.

19.5.8 Increaselnterval

> Increaselnterval(x, delta) (operation)

Returns an interval with same midpoint as x but absolute diameter increased by delta.

19.5.9 Blowuplnterval

> BlowupInterval(x, ratio) (operation)

Returns an interval with same midpoint as x but relative diameter increased by ratio.

19.5.10 BisectInterval

> BisectInterval (x) (operation)

Returns a list of two intervals whose union equals the interval x.

Chapter 20

Booleans

The two main boolean values are true and false. They stand for the logical values of the same
name. They appear as values of the conditions in if-statements and while-loops. Booleans are also
important as return values of filters (see 13.2) such as IsFinite (30.4.2) and IsBool (20.1.1). Note
that it is a convention that the name of a function that returns true or false according to the outcome,
starts with Is.

For technical reasons, also the value fail (see 20.2) is regarded as a boolean.

20.1 IsBool (Filter)

20.1.1 IsBool

> IsBool(obj) (Category)

tests whether obj is true, false or fail.
Example
gap> IsBool(true); IsBool(false); IsBool(17);
true

true

false

20.2 Fail (Variable)

20.2.1 fail

> fail (global variable)

The value fail is used to indicate situations when an operation could not be performed for the
given arguments, either because of shortcomings of the arguments or because of restrictions in the
implementation or computability. So for example Position (21.16.1) will return fail if the point
searched for is not in the list.

fail is simply an object that is different from every other object than itself.

For technical reasons, fail is a boolean value. But note that fail cannot be used to form boolean
expressions with and, or, and not (see 20.4 below), and fail cannot appear in boolean lists (see
Chapter 22).

250

GAP - Reference Manual 251

20.3 Comparisons of Booleans

20.3.1 Equality and inequality of Booleans

booll = bool2
booll <> bool2

The equality operator = evaluates to true if the two boolean values bool1 and bool2 are equal,
i.e., both are true or both are false or both fail, and false otherwise. The inequality operator <>
evaluates to true if the two boolean values booll, bool2 are different, and false otherwise. This
operation is also called the exclusive or, because its value is true if exactly one of booll or bool2
is true.

You can compare boolean values with objects of other types. Of course they are never equal.

Example
gap> true = false;
false
gap> false = (true = fail);
true
gap> true <> 17;
true

20.3.2 Ordering of Booleans

booll < bool2
The ordering of boolean values is defined by true < false < fail. For the comparison of
booleans with other GAP objects, see Section 4.12.

Example

gap> true < false; fail >= false;
true
true

20.4 Operations for Booleans

The following boolean operations are only applicable to true and false.

20.4.1 Logical disjunction

booll or bool2

The logical operator or evaluates to true if at least one of the two boolean operands bool1 and
bool2 is true, and to false otherwise.

or first evaluates bool1. If the value is neither true nor false an error is signalled. If the value is
true, then or returns true without evaluating bool2. If the value is false, then or evaluates bool2.
Again, if the value is neither true nor false an error is signalled. Otherwise or returns the value of
bool2. This short-circuited evaluation is important if the value of bool1 is true and evaluation of
bool2 would take much time or cause an error.

or is associative, i.e., it is allowed to write b1 or b2 or b3, which is interpreted as (b1 or b2) or
b3. or has the lowest precedence of the logical operators. All logical operators have lower precedence
than the comparison operators =, <, in, etc.

GAP - Reference Manual 252

Example
gap> true or false;
true
gap> false or false;
false
gap> i := -1;; 1 := [1,2,3];;
gap> if i <= 0 or 1[i] = false then # this does not cause an error,
> Print("aha\n"); fi; # because ‘1[i]’ is not evaluated
aha

20.4.2 Logical conjunction

booll and bool2
fill and fi12

The logical operator and evaluates to true if both boolean operands bool1, bool2 are true, and
to false otherwise.

and first evaluates bool1. If the value is neither true nor false an error is signalled. If the value
is false, then and returns false without evaluating bool2. If the value is true, then and evaluates
bool2. Again, if the value is neither true nor false an error is signalled. Otherwise and returns
the value of bool2. This short-circuited evaluation is important if the value of bool1 is false and
evaluation of boo12 would take much time or cause an error.

and is associative, i.e., it is allowed to write b1 and b2 and b3, which is interpreted as (b1 and
b2) and b3. and has higher precedence than the logical or operator, but lower than the unary logical
not operator. All logical operators have lower precedence than the comparison operators =, <, in, etc.

Example
gap> true and false;
false
gap> true and true;
true
gap> false and 17; # does not cause error, because 17 is never looked at
false

and can also be applied to filters. It returns a filter that when applied to some argument x, tests
£i11(x) and £i12(x).

Example
gap> andfilt:= IsPosRat and IsInt;;

gap> andfilt(17); andfilt(1/2);

true

false

20.4.3 Logical negation

not bool

The logical operator not returns true if the boolean value bool is false, and true otherwise.
An error is signalled if bool does not evaluate to true or false.

not has higher precedence than the other logical operators, or and and. All logical operators have
lower precedence than the comparison operators =, <, in, etc.

GAP - Reference Manual

253

Example
gap> true and false;
false
gap> not true;
false

gap> not false;
true

Chapter 21

Lists

Lists are the most important way to treat objects together. A list arranges objects in a definite order.
So each list implies a partial mapping from the integers to the elements of the list. I.e., there is a first
element of a list, a second, a third, and so on. Lists can occur in mutable or immutable form, see 12.6
for the concept of mutability, and 21.7 for the case of lists.

This chapter deals mainly with the aspect of lists in GAP as data structures. Chapter 30 tells more
about the collection aspect of certain lists, and more about lists as arithmetic objects can be found in
the chapters 23 and 24.

Lists are used to implement ranges (see 21.22), sets (see 21.19), strings (see 27), row vectors
(see 23), and matrices (see 24); Boolean lists (see 22) are a further special kind of lists.

Several operations for lists, such as Intersection (30.5.2) and Random (30.7.1), will be described
in Chapter 30, in particular see 30.3.

21.1 List Categories

A list can be written by writing down the elements in order between square brackets [, 1, and separat-
ing them with commas ,. An empty list, i.e., a list with no elements, is written as [].

Example
gap> [1, 2, 3 1; # a list with three elements
[1, 2, 3]

gap> [[0, [11, [1, 21]; # a list may contain other lists
1, 0131, 01,211

Each list constructed this way is mutable (see 12.6).

21.1.1 IsList

> IsList (Obj) (Category)

tests whether obj is a list.

Example
gap> IsList([1, 3, 5, 71); IsList(1);
true
false

254

GAP - Reference Manual 255

21.1.2 IsDenseList

> IsDenselList(obj) (Category)

A list is dense if it has no holes, i.e., contains an element at every position up to the length. It is
absolutely legal to have lists with holes. They are created by leaving the entry between the commas
empty. Holes at the end of a list are ignored. Lists with holes are sometimes convenient when the list

represents a mapping from a finite, but not consecutive, subset of the positive integers.
Example

gap> IsDenselList([1, 2, 3]);

true

gap> 1 := [, 4, 9,, 25,, 49,,,, 121 1;; IsDenselList(1);
false

gap> 1[3];

9

gap> 1[4];

List Element: <list>[4] must have an assigned value
not in any function

Entering break read-eval-print loop ..

you can ’quit;’ to quit to outer loop, or

you can ’return;’ after assigning a value to continue

brk> 1[4] := 16;; # assigning a value

brk> return; # to escape the break-loop
16

gap>

Observe that requesting the value of 1[4], which was not assigned, caused the entry of a break-
loop (see Section 6.4). After assigning a value and typing return;, GAP is finally able to comply
with our request (by responding with 16).

21.1.3 IsHomogeneousList

> IsHomogeneousList (obj) (Category)

returns true if obj is a list and it is homogeneous, and false otherwise.

A homogeneous list is a dense list whose elements lie in the same family (see 13.1). The empty
list is homogeneous but not a collection (see 30), a nonempty homogeneous list is also a collection.
Example
gap> IsHomogeneousList([1, 2, 3 1); IsHomogeneousList([]);
true
true
gap> IsHomogeneousList([1, false, () 1);
false

21.1.4 IsTable

> IsTable(obj) (Category)

A table is a nonempty list of homogeneous lists which lie in the same family. Typical examples of
tables are matrices (see 24).

GAP - Reference Manual 256

Example
gap> IsTable([[1, 21, [3,411); # in fact a matrix
true
gap> IsTable([[11, [2,31 1); # not rectangular but a table
true
gap> IsTable([[1, 21, [O , (1,2) 11); # not homogeneous
false
21.1.5 IsRectangularTable
> IsRectangularTable(list) (property)

A list lies in IsRectangularTable when it is nonempty and its elements are all homogeneous
lists of the same family and the same length.

21.1.6 IsConstantTimeAccessList

> IsConstantTimeAccessList(list) (Category)

This category indicates whether the access to each element of the list 1ist will take roughly the
same time. This is implied for example by IsList and IsInternalRep, so all strings, Boolean
lists, ranges, and internally represented plain lists are in this category.

But also other enumerators (see 21.23) can lie in this category if they guarantee constant time
access to their elements.

21.2 Basic Operations for Lists

The basic operations for lists are element access (see 21.3), assignment of elements to a list (see 21.4),
fetching the length of a list (see Length (21.17.5)), the test for a hole at a given position, and unbinding
an element at a given position (see 21.5).

The term basic operation means that each other list operation can be formulated in terms of the
basic operations. (But note that often a more efficient method than this one is implemented.)

Any GAP object 1ist in the category IsList (21.1.1) is regarded as a list, and if methods for the
basic list operations are installed for 1ist then 1ist can be used also for the other list operations.

For internally represented lists, kernel methods are provided for the basic list operations with
positive integer indices. For other lists or other indices, it is possible to install appropriate methods
for these operations. This permits the implementation of lists that do not need to store all list elements
(see also 21.23); for example, the elements might be described by an algorithm, such as the elements
list of a group. For this reduction of space requirements, however, a price in access time may have to
be paid (see ConstantTimeAccessList (21.17.6)).

21.2.1 \[\]

> \[\] (1ist, ix) (operation)
> IsBound\[\] (list, ix) (operation)
> \[\I\:\=(1ist, pos, ix) (operation)

GAP - Reference Manual 257

> Unbind\[\] (1ist, ix) (operation)

These operations implement element access, test for element boundedness, list element assign-
ment, and removal of the element with index ix.

Note that the special characters [, 1, :, and = must be escaped with a backslash \ (see 4.3); so
\[\] (21.2.1) denotes the operation for element access in a list, whereas [] denotes an empty list.
(Maybe the variable names involving special characters look strange, but nevertheless they are quite
suggestive.)

\N[\](1ist, ix) is equivalent to 1ist[ix], which clearly will usually be preferred; the
former is useful mainly if one wants to access the operation itself, for example if one wants to install
a method for element access in a special kind of lists.

Similarly, IsBound\ [\] (21.2.1) is used explicitly mainly in method installations. In other situa-
tions, one can simply call IsBound (21.5.1), which then delegates to IsBound\ [\] (21.2.1) if the first
argument is a list, and to IsBound\. (29.7.3) if the first argument is a record.

Analogous statements hold for \ [\]\:\=(21.2.1) and Unbind\ [\] (21.2.1).

21.3 List Elements

list[ix 1]

The above construct evaluates to the element of the list 1ist with index ix. For built-in list types
and collections, indexing is done with origin 1, i.e., the first element of the list is the element with
index 1.

Example
gap> 1 := [2, 3, 5, 7, 11, 13 1;; 1[1]; 1[2]; 1[6];
2
3
13

If 1ist is not a built-in list, or ix does not evaluate to a positive integer, method selection is invoked
to try and find a way of indexing 1ist with index ix. If this fails, or the selected method finds that
list [ix] is unbound, an error is signalled.

list{ poss }

The above construct evaluates to a new list new whose first element is 1ist [poss [1]], whose
second element is 1ist [poss [2]], and so on. However, it does not need to be sorted and may contain
duplicate elements. If for any i, 1ist [poss [i]] is unbound, an error is signalled.

Example
gap> 1 := [2, 3, 5, 7, 11, 13, 17, 19 1;;
gap> 1{[4..6]}; 1{[1,7,1,8]};

[7, 11, 13]

[2, 17, 2, 19]

The result is a new list, that is not identical to any other list. The elements of that list, however, are
identical to the corresponding elements of the left operand (see 21.6).

It is possible to nest such sublist extractions, as can be seen in the example below.
Example
gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12] 1;; m{[1,2,31}{[3,2]};
(03, 21,[6,51,[9,81]1

GAP - Reference Manual 258

gap> 1 := m{[1,2,31};; 1{[3,2]};
LCL7,8, 91, [4,5,61]1

Note the difference between the two examples. The latter extracts elements 1, 2, and 3 from m and
then extracts the elements 3 and 2 from this list. The former extracts elements 1, 2, and 3 from m and
then extracts the elements 3 and 2 from each of those element lists.

To be precise: With each selector [pos] or {poss} we associate a level that is defined as the
number of selectors of the form {poss? to its left in the same expression. For example

1[pos1]{poss2}{poss3}[pos4]{poss5} [pos6]
level 0 0 1 2 2 3

Then a selector 1ist [pos] of level level is computed as ListElement (1ist,pos,level),
where ListElement is defined as follows. (Note that ListElement is not a GAP function.)

Example

ListElement := function (list, pos, level)

if level = 0 then

return list[pos];

else

return List(list, elm -> ListElement(elm,pos,level-1));
fi;
end;

and a selector 1ist {poss} of level 1evel is computed as ListElements(list ,poss,level),

where ListElements is defined as follows. (Note that ListElements is not a GAP function.)
Example
ListElements := function (list, poss, level)

if level = 0 then

return list{poss};

else

return List(list, elm -> ListElements(elm,poss,level-1));

fi;

end;

21.3.1 \{\}

> \{\}(1ist, poss) (operation)

This operation implements sublist access. For any list, the default method is to loop over the
entries in the list poss, and to delegate to the element access operation. (For the somewhat strange
variable name, cf. 21.2.)

21.4 List Assignment

list[ix] := object;

The list element assignment assigns the object object, which can be of any type, to the list with
index ix, in the mutable (see 12.6) list 1ist. That means that accessing the ix-th element of the list
list will return object after this assignment.

GAP - Reference Manual 259

Example
gap> 1 := [1, 2, 31;;
gap> 1[1] := 3;; 1; # assign a new object
[3,2, 3]
gap> 1[2] := , 6 1;; 1; # <object> may be of any type

gap> 1[1[1]

[3, [4, 5,

[5

(3, [4,5,61, 3]
] :=10;; 1; # <index> may be an expression
6

If the index ix is an integer larger than the length of the list 1ist (see Length (21.17.5)), the list

is automatically enlarged to make room for the new element. Note that it is possible to generate lists
with holes that way.

Example
gap> 1[4] := "another entry";; 1; # <list> is enlarged
[3, [4, 5, 6], 10, "another entry"]
gap> 1[10 1 := 1;; 1; # now <list> has a hole
[3, [4, 5, 61, 10, "another entry",,,,,, 1]

The function Add (21.4.2) should be used if you want to add an element to the end of the list.

Note that assigning to a list changes the list, thus this list must be mutable (see 12.6). See 21.6 for
subtleties of changing lists.

If 1ist does not evaluate to a list, pos does not evaluate to a positive integer, method selection is
invoked to try and find a way of indexing 1ist with index pos. If this fails, or the selected method

finds that 1ist [pos] is unbound, or if object is a call to a function which does not return a value
(for example Print) an error is signalled.

list{ poss } := objects;
The sublist assignment assigns the object objects [1], which can be of any type, to the list 1ist
at the position poss [1], the object objects [2] to 1ist [poss[2]], and so on. poss must be a

dense list of positive integers, it need, however, not be sorted and may contain duplicate elements.
objects must be a dense list and must have the same length as poss.

Example
gap> 1 := [2, 3, 5, 7, 11, 13, 17, 19 1;;
gap> 1{[1..4]1} := [10..13];; 1;

[10, 11, 12, 13, 11, 13, 17, 19]
gap> 1{[1,7,1,10]} := [1, 2, 3, 4]
[3, 11, 12, 13, 11, 13, 2, 19,, 4]

HE

The next example shows that it is possible to nest such sublist assignments.

Example
gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12] 1;;

gap> m{[1,2,31}{[3,2]1} := [[11,12], [13,14], [15,16] 1;; m;
(C1, 12, 111, [4, 14, 131, [7, 16, 151, [10, 11, 12]]

The exact behaviour is defined in the same way as for list extractions (see 21.3). Namely, with

each selector [pos] or {poss} we associate a level that is defined as the number of selectors of the
form {poss? to its left in the same expression. For example

GAP - Reference Manual 260

Example
1[pos1]{poss2}{poss3}[pos4]{possb} [pos6]
level 0 0 1 1 1 2
Then a list assignment 1ist [pos] := vals; of level level is computed as ListAssignment (

list, pos, vals, level), where ListAssignment is defined as follows. (Note that
ListAssignment is not a GAP function.)

Example
ListAssignment := function (list, pos, vals, level)
local i;
if level = 0 then
list[pos] := vals;
else

for i in [1..Length(list)] do
ListAssignment(list[i], pos, vals[i], level-1);
od;

fi;

end;

and a list assignment 1ist{poss} := vals oflevel level is computed as ListAssignments (
list, poss, vals, level), where ListAssignments is defined as follows. (Note that
ListAssignments is not a GAP function.)
Example
ListAssignments := function (list, poss, vals, level)
local i;
if level = 0 then
list{poss} := vals;
else
for i in [1..Length(list)] do
ListAssignments(list[i], poss, vals[i], level-1);
od;
fi;
end;

2141 \{\}\:\=
> \{\}\:\=(1ist, poss, val) (operation)
This operation implements sublist assignment. For any list, the default method is to loop over

the entries in the list poss, and to delegate to the element assignment operation. (For the somewhat
strange variable name, cf. 21.2.)

2142 Add

> Add(list, obj[, pos]) (operation)

adds the element obj to the mutable list 1ist. The two argument version adds obj at the end of
list,i.e., it is equivalent to the assignment 1ist [Length(list) + 1] := obj, see21.4.

GAP - Reference Manual 261

The three argument version adds obj in position pos, moving all later elements of the list (if any)
up by one position. Any holes at or after position pos are also moved up by one position, and new
holes are created before pos if they are needed.

Nothing is returned by Add, the function is only called for its side effect.

21.4.3 Remove

> Remove(list[, pos]) (operation)

removes an element from 1ist. The one argument form removes the last element. The two argu-
ment form removes the element in position pos, moving all subsequent elements down one position.
Any holes after position pos are also moved down by one position.

The one argument form always returns the removed element. In this case 1ist must be non-empty.

The two argument form returns the old value of 1ist[pos] if it was bound, and nothing if it was
not. Note that accessing or assigning the return value of this form of the Remove operation is only safe

when you know that there will be a value, otherwise it will cause an error.
Example
gap> 1 := [2, 3, 5 1;; Add(1, 7); 1;

[2, 3,5, 7]

gap> Add(1,4,2); 1;

[2, 4, 3,5, 7]

gap> Remove(1l,2); 1;

4

[2, 3,5, 7]

gap> Remove(1l); 1;

-
[2, 3, 5]
gap> Remove(1l,5); 1;
[2, 3, 5]

21.4.4 CopyListEntries

> CopylListEntries(fromlst, fromind, fromstep, tolst, toind, tostep, n) (function)

This function copies n elements from fromlst, starting at position fromind and incrementing
the position by fromstep each time, into tolst starting at position toind and incrementing the
position by tostep each time. fromlst and tolst must be plain lists. fromstep and/or tostep
can be negative. Unbound positions of fromlst are simply copied to tolst.

CopyListEntries is used in methods for the operations Add (21.4.2) and Remove (21.4.3).

21.4.5 Append

> Append(listl, list2) (operation)

adds the elements of the list 1ist2 to the end of the mutable list 1ist1, see 21.4. 1ist2 may
contain holes, in which case the corresponding entries in 1ist1 will be left unbound. Append returns
nothing, it is only called for its side effect.

Note that Append changes its first argument, while Concatenation (21.20.1) creates a new list
and leaves its arguments unchanged.

GAP - Reference Manual 262

Example
gap> 1 := [2, 3, 51;; Append(1, [7, 11, 13 1); 1;
[2, 3,5, 7, 11, 13]

gap> Append(1, [17,, 23 1); 1;

[2, 3,5, 7, 11, 13, 17,, 23]

21.5 IsBound and Unbind for Lists

21.5.1 IsBound (for a list index)

> IsBound(list [, n]) (operation)

IsBound returns true if the list 1ist has an element at index n, and false otherwise. 1ist must
evaluate to a list, or to an object for which a suitable method for IsBound\[\] has been installed,
otherwise an error is signalled.

Example
gap> 1 :=[, 2,3, ,56, ,7, ,,,111;;
gap> IsBound(1[7]);

true

gap> IsBound(1[4]);

false

gap> IsBound(1[101]);

false

21.5.2 GetWithDefault

> GetWithDefault(list, n, default) (operation)

GetWithDefault returns the nth element of the list 1ist, if 1ist has a value at index n, and
default otherwise.

While this method can be used on any list, it is particularly useful for Weak Pointer lists 86.1
where the value of the list can change.

To distinguish between the nth element being unbound, or default being in list, users can
create a new mutable object, such as a string. IsIdenticalObj (12.5.1) returns false for different
mutable strings, even if their contents are the same.

Example
gap> 1 := [1,2,,"a"];
[1, 2,, "a"]
gap> newobj := "a";
llall
gap> GetWithDefault(l, 2, newobj);
2
gap> GetWithDefault(l, 3, newobj);
llall
gap> GetWithDefault(l, 4, newobj);
l|a|’
gap> IsIdenticalObj(GetWithDefault(l, 3, newobj), newobj) ;
true

GAP - Reference Manual 263

gap> IsIdenticalObj(GetWithDefault(l, 4, newobj), newobj);
false

21.5.3 Unbind (unbind a list entry)

> Unbind(list[, nl) (operation)

Unbind deletes the element with index n in the mutable list 1ist. That is, after execution of
Unbind, 1ist no longer has an assigned value with index n. Thus Unbind can be used to produce
holes in a list. Note that it is not an error to unbind a nonexistant list element. 1ist must evaluate to a
list, or to an object for which a suitable method for Unbind\ [\] has been installed, otherwise an error
is signalled.

Example
gap> 1 :=1[,2,3,5,,7,,,,111;;
gap> Unbind(1[3]); 1;

L, 2,,5,, 7,,,, 111
gap> Unbind(1[4]); 1;
[, 2,,,, 7y, 111

Note that IsBound (21.5.1) and Unbind are special in that they do not evaluate their argument,
otherwise IsBound (21.5.1) would always signal an error when it is supposed to return false and
there would be no way to tell Unbind which component to remove.

21.6 Identical Lists

With the list assignment (see 21.4) it is possible to change a mutable list. This section describes the
semantic consequences of this fact. (See also 12.5.)

First we define what it means when we say that “an object is changed”. You may think that in the
following example the second assignment changes the integer.

Example

i = 3;
i+ 1;

But in this example it is not the integer 3 which is changed, by adding one to it. Instead the
variable i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing
happens in the example below.

Example
1:=[01, 21;
(1,2, 31];

The second assignment does not change the first list, instead it assigns a new list to the variable 1.
On the other hand, in the following example the list is changed by the second assignment.

Example
1:=1[1, 21;
1[3] := 3;

GAP - Reference Manual 264

To understand the difference, think of a variable as a name for an object. The important point
is that a list can have several names at the same time. An assignment var := list; means in this
interpretation that var is a name for the object 1ist. At the end of the following example 12 still has
the value [1, 2] as this list has not been changed and nothing else has been assigned to it.
Example

11 :=[1, 2 1];
12 := 11;
11 :=[1, 2, 31;

But after the following example the list for which 12 is a name has been changed and thus the
valueof 12isnow [1, 2, 3 1].

Example
11 := [1, 2 1;
12 := 11;
11[3] := 3;

We say that two lists are identical if changing one of them by a list assignment also changes the
other one. This is slightly incorrect, because if two lists are identical, there are actually only two
names for one list. However, the correct usage would be very awkward and would only add to the
confusion. Note that two identical lists must be equal, because there is only one list with two different
names. Thus identity is an equivalence relation that is a refinement of equality. Identity of objects can
be detected using IsIdenticalObj (12.5.1).

Let us now consider under which circumstances two lists are identical.

If you enter a list literal then the list denoted by this literal is a new list that is not identical to any
other list. Thus in the following example 11 and 12 are not identical, though they are equal of course.
Example

11 := [1, 2 1;
[1, 2]

12 :=

B B

Also in the following example, no lists in the list 1 are identical.
Example

1 :=[];
for i in [1..10] do 1[i] := [1, 2 1; od;

If you assign a list to a variable no new list is created. Thus the list value of the variable on the
left hand side and the list on the right hand side of the assignment are identical. So in the following
example 11 and 12 are identical lists.

Example

11 :
12 :

[1, 21;
11;

If you pass a list as an argument, the old list and the argument of the function are identical. Also
if you return a list from a function, the old list and the value of the function call are identical. So in
the following example 11 and 12 are identical lists:
Example

11 := [1, 2 1;
f := function (1) return 1; end;
12 := £(11);

GAP - Reference Manual 265

If you change a list it keeps its identity. Thus if two lists are identical and you change one of them,
you also change the other, and they are still identical afterwards. On the other hand, two lists that are
not identical will never become identical if you change one of them. So in the following example both
11 and 12 are changed, and are still identical.

Example
11 := [1, 2 1;
12 := 11;
11[1] := 2;

21.7 Duplication of Lists

Here we describe the meaning of ShallowCopy (12.7.1) and StructuralCopy (12.7.2) for lists. For
the general definition of these functions, see 12.7.

The subobjects (see ShallowCopy (12.7.1)) of a list are exactly its elements.

This means that for any list 1ist, ShallowCopy (12.7.1) returns a mutable new list new that is
not identical to any other list (see 21.6), and whose elements are identical to the elements of 1ist.

Analogously, for a mutable list 1ist, StructuralCopy (12.7.2) returns a mutable new list scp
that is not identical to any other list, and whose elements are structural copies (defined recursively)
of the elements of 1ist; an element of scp is mutable (and then a new list) if and only if the corre-
sponding element of 1ist is mutable.

In both cases, modifying the copy new resp. scp by assignments (see 21.4) does not modify the
original object 1ist.

ShallowCopy (12.7.1) basically executes the following code for lists.

Example
new := [];
for i in [1 .. Length(1list)] do
if IsBound(list[i]) then
newl[i] := list[i];
fi;
od;
Example

gap> 1listl := [[1, 21, [3, 41 1;; 1ist2 := ShallowCopy(listl);;
gap> IsIdenticalObj(listl, list2);

false
gap> IsIdenticalObj(list1[1], 1list2[1]);
true
gap> 1list2[1] := 0;; 1listl; 1list2;
(1,21, 0[03,41]1

11

Lo, [3, 4

StructuralCopy (12.7.2) basically executes the following code for lists.

Example
new := [];
for i in [1 .. Length(1list)] do
if IsBound(list[i]) then
new[i] := StructuralCopy(list[i]);
fi;
od;

GAP - Reference Manual 266

Example
gap> listl := [[1, 21, [3, 41 1;; 1list2 := StructuralCopy(listl);;
gap> IsIdenticalObj(listl, list2);

false

gap> IsIdenticalObj(list1[1], list2[1]);
false

gap> list2[1][1] := 0;; 1listl; 1list2;
(L1, 21, [3,

41]
tfto,21,[0[3,41]1

The above code is not entirely correct. If the object 1ist contains a mutable object twice this
object is not copied twice, as would happen with the above definition, but only once. This means that
the copy new and the object 1ist have exactly the same structure when viewed as a general graph.

Example
gap> sub := [1, 2];; listl := [sub, sub];;
gap> list2 := Str ucturalCopy(listl);
(f1,271,01,21]1
gap> 1list2[1]1[1] := 0;; list2;

([o0,21, 00,211
gap> listl;
(f1,271,01,21]1

21.8 Membership Test for Lists

21.8.1 \in (element test for lists)

> \in(obj, list) (operation)

This function call or the infix variant obj in 1ist tests whether there is a positive integer i such
that 1ist[i] = obj holds.
If the list 1ist knows that it is strictly sorted (see IsSSortedList (21.17.4)), the membership

test is much quicker, because a binary search can be used instead of the linear search used for arbitrary
lists, see \in (21.19.1).

Example
gap> 1 in [2, 2, 1, 3]; 1in [4, -1, 0, 3 1;
true
false

gap> s := SSortedList([2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]);;
gap> 17 in s; # uses binary search and only 4 comparisons
false

For finding the position of an element in a list, see 21.16.

21.9 Enlarging Internally Represented Lists

Section 21.4 told you (among other things) that it is possible to assign beyond the logical end of a
mutable list, automatically enlarging the list. This section tells you how this is done for internally
represented lists.

GAP - Reference Manual 267

It would be extremely wasteful to make all lists large enough so that there is room for all assign-
ments, because some lists may have more than 100000 elements, while most lists have less than 10
elements.

On the other hand suppose every assignment beyond the end of a list would be done by allocating
new space for the list and copying all entries to the new space. Then creating a list of 1000 elements
by assigning them in order, would take half a million copy operations and also create a lot of garbage
that the garbage collector would have to reclaim.

So the following strategy is used. If a list is created it is created with exactly the correct size. If a
list is enlarged, because of an assignment beyond the end of the list, it is enlarged by at least 1ength /8
+ 4 entries. Therefore the next assignments beyond the end of the list do not need to enlarge the list.
For example creating a list of 1000 elements by assigning them in order, would now take only 32
enlargements.

The result of this is of course that the physical length of a list may be larger than the logical length,
which is usually called simply the length of the list. Aside from the implications for the performance
you need not be aware of the physical length. In fact all you can ever observe, for example by calling
Length (21.17.5), is the logical length.

Suppose that Length (21.17.5) would have to take the physical length and then test how many
entries at the end of a list are unassigned, to compute the logical length of the list. That would take
too much time. In order to make Length (21.17.5), and other functions that need to know the logical
length, more efficient, the length of a list is stored along with the list.

For fine tuning code dealing with plain lists we provide the following two functions.

21.9.1 EmptyPlist

> EmptyPlist (len) (function)
Returns: a plain list
> ShrinkAllocationPlist (1) (function)

Returns: nothing

The function EmptyPlist returns an empty plain list which has enough memory allocated for 1en
entries. This can be useful for creating and filling a plain list with a known number of entries.

The function ShrinkAllocationPlist gives back to GAP’s memory manager the physical
memory which is allocated for the plain list 1 but not needed by the current number of entries.

Note that there are similar functions EmptyString (27.4.5) and ShrinkAllocationString
(27.4.5) for strings instead of plain lists.

Example
gap> 1:=[1; for i in [1..160] do Add(1l, i~2); od;
[]
gap> m:=EmptyPlist(160); for i in [1..160] do Add(m, i~2); od;
[]

gap> # now 1 uses about 25% more memory than the equal list m
gap> ShrinkAllocationPlist(1);
gap> # now 1 and m use the same amount of memory

21.10 Comparisons of Lists

listl = list2
listl <> 1ist2

GAP - Reference Manual 268

Two lists 1ist1 and 1ist2 are equal if and only if for every index i, either both entries 1ist1|i]
and 1ist2[i] are unbound, or both are bound and are equal, i.e., 1ist1[i] = 1ist2[i] is true.

Example
gap> [1, 2,31 =101, 2, 31;

true

gap> [, 2,31 =101, 2, 1;

false

gap> [1, 2, 31 =1013,2,11;

false

This definition will cause problems with lists which are their own entries. Comparing two such
lists for equality may lead to an infinite recursion in the kernel if the list comparison has to compare
the list entries which are in fact the lists themselves, and then GAP crashes.

listl < list2

listl <= list2

Lists are ordered lexicographically. Unbound entries are smaller than any bound entry. That
implies the following behaviour. Let i be the smallest positive integer i such that 1ist1 and 1ist2 at
position i differ, i.e., either exactly one of 1ist1[i], 1ist2[i] is bound or both entries are bound and
differ. Then list1 is less than 1ist2 if either 1ist1[i] is unbound (and 1ist2[i] is not) or both are
bound and 1ist1[i] < 1ist2][i] is true.

Example
gap> [1, 2, 3, 41 <[1, 2,4, 817; # <list1>[3] < <1list2>[3]

true

gap> [1, 2, 31 < [1, 2, 3,5]; # <list1>[4] is unbound and thus < 5
true

gap> [1, , 3,41 < [1, -1, 3]; # <list1>[2] is unbound and thus < -1
true

Note that for comparing two lists with < or <=, the (relevant) list elements must be comparable
with <, which is usually not the case for objects in different families, see 13.1. Also for the possibility
to compare lists with other objects, see 13.1.

21.11 Arithmetic for Lists

It is convenient to have arithmetic operations for lists, in particular because in GAP row vectors and
matrices are special kinds of lists. However, it is the wide variety of list objects because of which we
prescribe arithmetic operations not for all of them. (Keep in mind that “list” means just an object in
the category IsList (21.1.1).)

(Due to the intended generality and flexibility, the definitions given in the following sections
are quite technical. But for not too complicated cases such as matrices (see 24.3) and row vectors
(see 23.2) whose entries aren’t lists, the resulting behaviour should be intuitive.)

For example, we want to deal with matrices which can be added and multiplied in the usual way,
via the infix operators + and *; and we want also Lie matrices, with the same additive behaviour but
with the multiplication defined by the Lie bracket. Both kinds of matrices shall be lists, with the usual
access to their rows, with Length (21.17.5) returning the number of rows etc.

For the categories and attributes that control the arithmetic behaviour of lists, see 21.12.

GAP - Reference Manual 269

For the definition of return values of additive and multiplicative operations whose arguments are
lists in these filters, see 21.13 and 21.14, respectively. It should be emphasized that these sections
describe only what the return values are, and not how they are computed.

For the mutability status of the return values, see 21.15. (Note that this is not dealt with in the
sections about the result values.)

Further details about the special cases of row vectors and matrices can be found in 23.2 and in 24.3,
the compression status is dealt with in 23.3 and 24.14.

21.12 Filters Controlling the Arithmetic Behaviour of Lists

The arithmetic behaviour of lists is controlled by their types. The following categories and attributes
are used for that.

Note that we distinguish additive and multiplicative behaviour. For example, Lie matrices have
the usual additive behaviour but not the usual multiplicative behaviour.

21.12.1 IsGeneralizedRow Vector

> IsGeneralizedRowVector(list) (Category)
For a list 1ist, the value true for IsGeneralizedRowVector indicates that the additive arith-

metic behaviour of 1ist is as defined in 21.13, and that the attribute NestingDepthA (21.12.4) will
return a nonzero value when called with 1ist.

Example
gap> IsList("abc"); IsGeneralizedRowVector("abc");
true
false

gap> liemat:= LieObject([[1, 21, [3, 411);
LieObject([[1, 271, [3,411)

gap> IsGeneralizedRowVector(liemat);

true

21.12.2 IsMultiplicativeGeneralizedRow Vector

> IsMultiplicativeGeneralizedRowVector(list) (Category)

For a list 1ist, the value true for IsMultiplicativeGeneralizedRowVector indicates
that the multiplicative arithmetic behaviour of 1ist is as defined in 21.14, and that the attribute
NestingDepthM (21.12.5) will return a nonzero value when called with 1ist.

Example
gap> IsMultiplicativeGeneralizedRowVector(liemat);

false

gap> bas:= CanonicalBasis(FullRowSpace(Rationals, 3));
CanonicalBasis((Rationals~3))

gap> IsMultiplicativeGeneralizedRowVector(bas);

true

Note that the filters IsGeneralizedRowVector (21.12.1),
IsMultiplicativeGeneralizedRowVector do not enable default methods for addition or
multiplication (cf. IsListDefault (21.12.3)).

GAP - Reference Manual 270

21.12.3 IsListDefault

> IsListDefault(list) (Category)

For a list 1ist, IsListDefault indicates that the default methods for arithmetic operations of
lists, such as pointwise addition and multiplication as inner product or matrix product, shall be appli-
cable to list.

IsListDefault implies IsGeneralizedRowVector (21.12.1) and
IsMultiplicativeGeneralizedRowVector (21.12.2).

All internally represented lists are in this category, and also all lists in the representations
IsGF2VectorRep, Is8BitVectorRep, IsGF2MatrixRep, and Is8BitMatrixRep (see 23.3 and
24.14). Note that the result of an arithmetic operation with lists in IsListDefault will in general be
an internally represented list, so most “wrapped list objects” will not lie in IsListDefault.

Example
gap> v:= [1, 2 1;; m:= [v, 2%v];;

gap> IsListDefault(v); IsListDefault(m);

true

true

gap> IsListDefault(bas); IsListDefault(liemat);
true

false

21.12.4 NestingDepthA

> NestingDepthA(obj) (attribute)

For a GAP object obj, NestingDepthA returns the additive nesting depth of obj. This is defined
recursively as the integer O if obj is not in IsGeneralizedRowVector (21.12.1), as the integer 1 if
obj is an empty list in IsGeneralizedRowVector (21.12.1), and as 1 plus the additive nesting depth
of the first bound entry in obj otherwise.

21.12.5 NestingDepthM

> NestingDepthM(obj) (attribute)

For a GAP object obj, NestingDepthM returns the multiplicative nesting depth of obj. This
is defined recursively as the integer O if obj is not in IsMultiplicativeGeneralizedRowVector
(21.12.2), as the integer 1 if obj is an empty list in IsMultiplicativeGeneralizedRowVector
(21.12.2), and as 1 plus the multiplicative nesting depth of the first bound entry in obj otherwise.
Example
gap> NestingDepthA(v); NestingDepthM(v);

1

1

gap> NestingDepthA(m); NestingDepthM(m);

2

2

gap> NestingDepthA(liemat); NestingDepthM(liemat) ;
2

0

GAP - Reference Manual 271

gap> 11:= [[1, 21, 3155 12:=[1, [2,31 1;;
gap> NestingDepthA(11); NestingDepthM(11);

2

2

gap> NestingDepthA(12); NestingDepthM(12);

1

1

21.13 Additive Arithmetic for Lists

In this general context, we define the results of additive operations only in the following sit-
uations. For unary operations (zero and additive inverse), the unique argument must be in
IsGeneralizedRowVector (21.12.1); for binary operations (addition and subtraction), at least one
argument must be in IsGeneralizedRowVector (21.12.1), and the other either is not a list or also in
IsGeneralizedRowVector (21.12.1).

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if at
least one argument is a list not in IsGeneralizedRowVector (21.12.1), it shall be left to this argument
whether the result in question is defined and what it is.)

21.13.1 Zero for lists

The zero (see Zero (31.10.3)) of a list x in IsGeneralizedRowVector (21.12.1) is defined as the list
whose entry at position i is the zero of x[i] if this entry is bound, and is unbound otherwise.

Example
gap> Zero([1, 2, 31); Zero([[1, 21, 3]); Zero(liemat);
[0, 0, 01

LLo,01, 01

LieObject([[0, 01, [0, 01 1)

21.13.2 AdditiveInverse for lists

The additive inverse (see AdditiveInverse (31.10.9)) of a list x in IsGeneralizedRowVector
(21.12.1) is defined as the list whose entry at position i is the additive inverse of x[i] if this entry
is bound, and is unbound otherwise.

Example
gap> AdditiveInverse([1, 2, 3]); AdditiveInverse([[1, 21, 31);
[-1, -2, -3]

([-1, -2171, -31]

21.13.3 Addition of lists

If x and y are in IsGeneralizedRowVector (21.12.1) and have the same additive nesting depth
(see NestingDepthA (21.12.4)), the sum x +y is defined pointwise, in the sense that the result is a list
whose entry at position i is x[i] + y[i] if these entries are bound, is a shallow copy (see ShallowCopy
(12.7.1)) of x]i] or y[i] if the other argument is not bound at position 7, and is unbound if both x and y
are unbound at position i.

GAP - Reference Manual 272

If x is in IsGeneralizedRowVector (21.12.1) and y is in IsGeneralizedRowVector (21.12.1)
and has lower additive nesting depth, or is neither a list nor a domain, the sum x + y is defined as
a list whose entry at position i is x[i] +y if x is bound at position i, and is unbound if not. The
equivalent holds in the reversed case, where the order of the summands is kept, as addition is not

always commutative.

Example
+[01,2,31; [1,2,31+0[0,2,41; [1,2]1+1[2Z2®1;

gap>
L2,
[1

D wW -
~N

[0%Z(2)
gap> 11: , » 3,4 1;; 12:= [, 2, 3, 4, 51;;

gap> 13:= [[1,21, , [5,61 1;; 14:=[, [3,41]1,[5,611;;
gap> NestingDepthA(11); NestingDepthA(12);

1

1

gap> NestingDepthA(13); NestingDepthA(14);

2

2

gap> 11 + 12;

[1, 2,6, 8, 5]

gap> 11 + 13;

(02, 2,3,41,,[6,6,3,41]1

gap> 12 + 14;

(,[3,6,3,4,51,[5,8,3,4,51]1

gap> 13 + 14;

(01,21, 03,41, [10, 12171

gap> 11 + [];

[1,, 3, 4]

[

]
]
21
[1

21.13.4 Subtraction of lists

For two GAP objects x and y of which one is in IsGeneralizedRowVector (21.12.1) and the other
is also in IsGeneralizedRowVector (21.12.1) or is neither a list nor a domain, x — y is defined as

x+(—y).

Example
gap> 11 - 12;
[1, -2, 0, 0, -5
gap> 11 - 13;
tcto, -2,3,41,, [-4, -6, 3, 411
gap> 12 - 14;
(,[0-3 -2,3,4,5]1,[-5,-4,3,4,51]1
gap> 13 - 14;
(1,21, 0-3,-41,[0,01]1
gap> 11 - [1;
[1,, 3, 4]

21.14 Multiplicative Arithmetic for Lists

In this general context, we define the results of multiplicative operations only in the fol-
lowing situations. For unary operations (one and inverse), the unique argument must be in

GAP - Reference Manual 273

IsMultiplicativeGeneralizedRowVector (21.12.2); for binary operations (multiplication and di-
vision), at least one argument must be in IsMultiplicativeGeneralizedRowVector (21.12.2), and
the other either not a list or also in IsMultiplicativeGeneralizedRowVector (21.12.2).

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if at
least one argument is a list not in IsMultiplicativeGeneralizedRowVector (21.12.2), it shall be
left to this argument whether the result in question is defined and what it is.)

21.14.1 One for lists

The one (see One (31.10.2)) of a dense list x in IsMultiplicativeGeneralizedRowVector
(21.12.2) such that x has even multiplicative nesting depth and has the same length as each of its
rows is defined as the usual identity matrix on the outer two levels, that is, an identity matrix of the
same dimensions, with diagonal entries One(x [1] [1]) and off-diagonal entries Zero(x [1] [1]

).

Example
gap> One([[1, 2], [3,411);
(f1,01, 00,111
gap> One([L L L2171, 0C2111, 00311, 10041111
cctcs211, 000111, 0CCoT1, 00111171

21.14.2 Inverse for lists

The inverse (see Inverse (31.10.8)) of an invertible square table x in
IsMultiplicativeGeneralizedRowVector (21.12.2) whose entries lie in a common field is
defined as the usual inverse y, i.e., a square matrix over the same field such that xy and yx is equal to
One(x).

Example
gap> Inverse([[1, 21, [3,411);
(C0-2,11, [3/2, -1/21]1]

21.14.3 Multiplication of lists

There are three possible computations that might be triggered by a multiplication involving a list in
IsMultiplicativeGeneralizedRowVector (21.12.2). Namely, x * y might be

(I) theinner product x[1]*y[1]4+x[2]*y[2] 4 - - - +x[n] *y[n], where summands are omitted for which
the entry in x or y is unbound (if this leaves no summand then the multiplication is an error), or

(L) the left scalar multiple, i.e., a list whose entry at position i is x y[i] if y is bound at position i,
and is unbound if not, or

(R) the right scalar multiple, i.e., a list whose entry at position i is x[i] x y if x is bound at position i,
and is unbound if not.

Our aim is to generalize the basic arithmetic of simple row vectors and matrices, so we first sum-
marize the situations that shall be covered.

GAP - Reference Manual 274

‘ scl vec mat
scl @ @
vee | (R) (D @
mat | (R) (R) (R)

This means for example that the product of a scalar (scl) with a vector (vec) or a matrix (mat) is
computed according to (L). Note that this is asymmetric.

Now we can state the general multiplication rules.

If exactly one argument is in IsMultiplicativeGeneralizedRowVector (21.12.2) then we re-
gard the other argument (which is then neither a list nor a domain) as a scalar, and specify result (L)
or (R), depending on ordering.

In the remaining cases, both x and y are in IsMultiplicativeGeneralizedRowVector
(21.12.2), and we distinguish the possibilities by their multiplicative nesting depths. An argument
with odd multiplicative nesting depth is regarded as a vector, and an argument with even multiplica-
tive nesting depth is regarded as a scalar or a matrix.

So if both arguments have odd multiplicative nesting depth, we specify result (I).

If exactly one argument has odd nesting depth, the other is treated as a scalar if it has lower
multiplicative nesting depth, and as a matrix otherwise. In the former case, we specify result (L) or
(R), depending on ordering; in the latter case, we specify result (L) or (I), depending on ordering.

We are left with the case that each argument has even multiplicative nesting depth. If the two
depths are equal, we treat the computation as a matrix product, and specify result (R). Otherwise, we
treat the less deeply nested argument as a scalar and the other as a matrix, and specify result (L) or
(R), depending on ordering.

Example
gap> [O, (2,3), (1,2), (1,2,3), (1,3,2), (1,3) 1 * (1,4);

[(1,4), (1,42,3), (1,2,4, (1,2,3,4), (1,3,2,4), (1,3,4)]
gap> [1, 2, , 4] *x 2;

[2, 4,, 8]

gap> [1, 2, 31 = [1, 3,5, 71;
22

gap> m:= [[1, 21, 31;; m * m;
(C7,81, [[3,61,91]1]

gap> m * m = [m[1] * m, m[2] * m];
true

gap> n:= [1, [2, 31 1;; n * n;
14

gap> n * n = n[1] * n[1] + n[2] * n[2];
true

21.14.4 Division of lists

For two GAP objects x and y of which one is in IsMultiplicativeGeneralizedRowVector

(21.12.2) and the other is also in IsMultiplicativeGeneralizedRowVector (21.12.2) or is nei-

ther a list nor a domain, x/y is defined as x*y~!.

Example
gap> [1, 2,31 /2; [1,21/[0[01,271,10[3,411;
[1/2, 1, 3/2]

[1, 0]

GAP - Reference Manual 275

21.14.5 mod for lists

If x and y are in IsMultiplicativeGeneralizedRowVector (21.12.2) and have the same multi-
plicative nesting depth (see NestingDepthM (21.12.5)), x mod y is defined pointwise, in the sense
that the result is a list whose entry at position 7 is x [i] mod y [i] if these entries are bound, is a
shallow copy (see ShallowCopy (12.7.1)) of x[i] or y[i] if the other argument is not bound at position
i, and is unbound if both x and y are unbound at position i.

If x is in IsMultiplicativeGeneralizedRowVector (21.12.2) and y 1is in
IsMultiplicativeGeneralizedRowVector (21.12.2) and has lower multiplicative nesting
depth or is neither a list nor a domain, x mod y is defined as a list whose entry at position i is x [1]
mod y if x is bound at position i, and is unbound if not. The equivalent holds in the reversed case,
where the order of the arguments is kept.

Example

gap> 4711 mod [2, 3,, 5, 7 1;

(1, 1,, 1, 0]

gap> [2, 3, 4, 5, 6] mod 3;

[2, 0,1, 2, 0]

gap> [10, 12, 14, 16 1 mod [3, 5, 7 1;
[1, 2, 0, 16 1]

21.14.6 Left quotients of lists

For two GAP objects x and y of which one is in IsMultiplicativeGeneralizedRowVector
(21.12.2) and the other is also in IsMultiplicativeGeneralizedRowVector (21.12.2) or is nei-
ther a list nor a domain, LeftQuotient(x, y) is defined as x! * .

Example
gap> LeftQuotient([[1, 21, [3,411, [1,21);
[0, 1/2]

21.15 Mutability Status and List Arithmetic

Many results of arithmetic operations, when applied to lists, are again lists, and it is of interest whether
their entries are mutable or not (if applicable). Note that the mutability status of the result itself
is already defined by the general rule for any result of an arithmetic operation, not only for lists
(see 12.6).

However, we do not define exactly the mutability status for each element on each level of a nested
list returned by an arithmetic operation. (Of course it would be possible to define this recursively,
but since the methods used are in general not recursive, in particular for efficient multiplication of
compressed matrices, such a general definition would be a burden in these cases.) Instead we consider,
for a list x in IsGeneralizedRowVector (21.12.1), the sequence x = x1,x3,...X, where x;.; is the
first bound entry in x; if exists (that is, if x; is a nonempty list), and n is the largest i such that x;
lies in IsGeneralizedRowVector (21.12.1). The immutability level of x is defined as infinity if x
is immutable, and otherwise the number of x; which are immutable. (So the immutability level of a
mutable empty list is 0.)

Thus a fully mutable matrix has immutability level 0, and a mutable matrix with immutable first
row has immutability level 1 (independent of the mutability of other rows).

GAP - Reference Manual 276

The immutability level of the result of any of the binary operations discussed here is the minimum
of the immutability levels of the arguments, provided that objects of the required mutability status
exist in GAP.

Moreover, the results have a “homogeneous” mutability status, that is, if the first bound entry at
nesting depth i is immutable (mutable) then all entries at nesting depth i are immutable (mutable,
provided that a mutable version of this entry exists in GAP).

Thus the sum of two mutable matrices whose first rows are mutable is a matrix all of whose rows
are mutable, and the product of two matrices whose first rows are immutable is a matrix all of whose
rows are immutable, independent of the mutability status of the other rows of the arguments.

For example, the sum of a matrix (mutable or immutable, i.e., of immutability level one of 0, 1, or
2) and a mutable row vector (i.e., immutability level 0) is a fully mutable matrix. The product of two
mutable row vectors of integers is an integer, and since GAP does not support mutable integers, the
result is immutable.

For unary arithmetic operations, there are three operations available, an attribute that returns an
immutable result (Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), Inverse (31.10.8)),
an operation that returns a result that is mutable (ZeroOp (31.10.3), AdditiveInverseQOp (31.10.9),
OneOp (31.10.2), InverseOp (31.10.8)), and an operation whose result has the same immutability level
as the argument (ZeroSM (31.10.3), AdditiveInverseSM (31.10.9), OnesSM (31.10.2), InverseSM
(31.10.8)). The last kind of operations is equivalent to the corresponding infix operations 0 * 1list,
- list, 1ist~0, and 1ist~-1. (This holds not only for lists, see 12.6.)

Example
gap> IsMutable(11); IsMutable(2 * Immutable([1, 2, 3]));
true
false

gap> IsMutable(12); IsMutable(13);
true

true

An example motivating the mutability rule is the use of syntactic constructs such as obj * list
and - list as an elegant and efficient way to create mutable lists needed for further manipulations
from mutable lists. In particular one can construct a mutable zero vector of lengthnby 0 * [1
n]. The latter can be done also using ListWithIdenticalEntries (21.15.1).

21.15.1 ListWithldenticalEntries

> ListWithIdenticalEntries(n, obj) (function)

is alist 1ist of length n that has the object obj stored at each of the positions from 1 to n. Note
that all elements of 1ists are identical, see 21.6.

Example
gap> ListWithIdenticalEntries(10, 0);
o, o, 0, 0,b0, 0, 0, 0, 0, 01

GAP - Reference Manual 277

21.16 Finding Positions in Lists

21.16.1 Position

> Position(list, obj[, from]) (operation)

returns the position of the first occurrence obj in 1ist, or fail if obj is not contained in 1ist.
If a starting index from is given, it returns the position of the first occurrence starting the search after
position from.

Each call to the two argument version is translated into a call of the three argument version, with
third argument the integer zero 0. (Methods for the two argument version must be installed as methods
for the version with three arguments, the third being described by IsZeroCyc.)

Example

gap> Position([2, 2, 1, 31, 1);

3

gap> Position([2, 1, 1, 31, 1);

2

gap> Position([2, 1, 1, 3], 1, 2);

3

gap> Position([2, 1, 1, 31, 1, 3);

fail
21.16.2 Positions
> Positions(list, obj) (function)
> PositionsOp(list, obj) (operation)

returns the positions of all occurrences of obj in 1ist.
Example

gap> Positions([1,2,1,2,3,2,2],2);
[2, 4, 6, 7]

gap> Positions([1,2,1,2,3,2,2],4);
[]

21.16.3 PositionCanonical

> PositionCanonical(list, obj) (operation)

returns the position of the canonical associate of obj in list. The definition of this asso-
ciate depends on list. For internally represented lists it is defined as the element itself (and
PositionCanonical thus defaults to Position (21.16.1), but for example for certain enumerators
(see 21.23) other canonical associates can be defined.

For example RightTransversal (39.8.1) defines the canonical associate to be the element in the
transversal defining the same coset of a subgroup in a group.

Example
gap> g:=Group((1,2,3,4),(1,2));;u:=Subgroup(g, [(1,2)(3,4),(1,3)(2,4)1);;
gap> rt:=RightTransversal(g,u);;AsList(rt);

[O, 3,4, (2,3), (2,3,4), (2,4,3), (2,4)]

gap> Position(rt,(1,2));

GAP - Reference Manual 278

fail
gap> PositionCanonical(rt,(1,2));
2

21.16.4 PositionNthOccurrence

> PositionNthOccurrence(list, obj, n) (operation)

returns the position of the n-th occurrence of obj in 1ist and returns fail if obj does not occur
n times.

Example
gap> PositionNthOccurrence([1,2,3,2,4,2,1],1,1);
1

gap> PositionNthOccurrence([1,2,3,2,4,2,1],1,2);
;ap> PositionNthOccurrence([1,2,3,2,4,2,1],2,3);
Zap> PositionNthOccurrence([1,2,3,2,4,2,1],2,4);
fail

21.16.5 PositionSorted

> PositionSorted(list, elm[, func]) (function)

Called with two arguments, PositionSorted returns the position of the element elm in the sorted
list 1ist.

Called with three arguments, PositionSorted returns the position of the element elm in the list
list, which must be sorted with respect to func. func must be a function of two arguments that
returns true if the first argument is less than the second argument, and false otherwise.

PositionSortedreturns pos such that 1ist[pos —1] < elm and elm < 1ist[pos|. That means,
if elm appears once in 1ist, its position is returned. If elm appears several times in 1ist, the position
of the first occurrence is returned. If elm is not an element of 1ist, the index where elm must be
inserted to keep the list sorted is returned.

PositionSorted uses binary search, whereas Position (21.16.1) can in general use only linear
search, see the remark at the beginning of 21.19. For sorting lists, see 21.18, for testing whether a list
is sorted, see IsSortedList (21.17.3) and IsSSortedList (21.17.4).

Specialized functions for certain kinds of lists must be installed as methods for the operation
PositionSortedOp.

Example
gap> PositionSorted([1,4,5,5,6,7], 0);
1
gap> PositionSorted([1,4,5,5,6,7], 2);
2
gap> PositionSorted([1,4,5,5,6,7], 4);
2
gap> PositionSorted([1,4,5,5,6,7], 5);
zap> PositionSorted([1,4,5,5,6,7]1, 8);
7

GAP - Reference Manual 279

21.16.6 PositionSet

> PositionSet(list, obj[, func]) (function)

PositionSet is a slight variation of PositionSorted (21.16.5). The only difference to
PositionSorted (21.16.5) is that PositionSet returns fail if obj isnotin list.

Example
gap> PositionSet([1,4,5,5,6,7]1, 0);
fail
gap> PositionSet([1,4,5,5,6,7], 2);
fail
gap> PositionSet([1,4,5,5,6,7], 4);
2
gap> PositionSet([1,4,5,5,6,7], 5);
3
gap> PositionSet([1,4,5,5,6,7], 8);
fail

21.16.7 PositionMaximum

> PositionMaximum(list/[, func]) (function)
> PositionMinimum(list[, func]) (function)

returns the position of maximum (with PositionMaximum) or minimum (with
PositionMinimum) entry in the list 1ist. If a second argument func is passed, then return
instead the position of the largest/smallest entry in List(list , func). If several entries of the
list are equal to the maximum/minimum, the first such position is returned.

Example

gap> PositionMaximum([2,4,-6,2,4]);

2

gap> PositionMaximum([2,4,-6,2,4], x -> -x);
3

gap> PositionMinimum([2,4,-6,2,4]);

3

gap> PositionMinimum([2,4,-6,2,4], x -> -x);
2

Maximum (21.20.13) and Minimum (21.20.14) allow you to find the maximum or minimum element
of a list directly.

21.16.8 PositionProperty
> PositionProperty(list, func[, from]) (operation)
returns the position of the first entry in the list 1ist for which the property tester function func

returns true, or fail if no such entry exists. If a starting index from is given, it returns the position
of the first entry satisfying func, starting the search after position from.

GAP - Reference Manual 280

Example
gap> PositionProperty([1077..1078], IsPrime);
20

gap> PositionProperty([1075..1076],

> n -> not IsPrime(n) and IsPrimePowerInt(n));
490

First (21.20.22) allows you to extract the first element of a list that satisfies a certain property.

21.16.9 PositionsProperty

> PositionsProperty(list, func) (operation)

returns the list of all those positions in the list 1ist which are bound and for which the property
tester function func returns true.

Example

gap> 1:= [-5 .. 5 1;;
gap> PositionsProperty(1, IsPosInt);
[L7,8,9, 10, 11]

gap> PositionsProperty(1, IsPrimeInt);
[1, 3, 4, 8,9, 11]

PositionProperty (21.16.8) allows you to extract the position of the first element in a list that
satisfies a certain property.

21.16.10 PositionBound

> PositionBound(list) (operation)

returns the first bound position of the list 1ist. For the empty list it returns fail.

Example
gap> PositionBound([1,2,3]);
1
gap> PositionBound([,1,2,3]);
2

21.16.11 PositionsBound

> PositionsBound(list) (operation)

returns the set of all bound positions in the list 1ist.

Example
gap> PositionsBound([1,2,3]);
[1..3]
gap> PositionsBound([,1,,3]1);
[2,4]

gap> PositionsBound([]);
(]

GAP - Reference Manual 281

21.16.12 PositionNot

> PositionNot(list, val[, from]) (operation)

For a list 1ist and an object val, PositionNot returns the smallest nonnegative integer n such
that 1ist [n] is either unbound or not equal to val. If a starting index from is given, it returns the first
position with this property starting the search after position from.

Example
gap> 1:= [1, 1, 2, 3, 2];; PositionNot(1, 1);
3
gap> PositionNot(1, 1, 4); PositionNot(1, 2, 4);
5
6
21.16.13 PositionNonZero
> PositionNonZero(vec[, from]) (operation)

For a row vector vec, PositionNonZero returns the position of the first non-zero element of vec,
or Length(vec)+1 if all entries of vec are zero.

If a starting index from is given, it returns the position of the first occurrence starting the search
after position from.

PositionNonZero implements a special case of PositionNot (21.16.12). Namely, the element
to be avoided is the zero element, and the list must be (at least) homogeneous because otherwise the
zero element cannot be specified implicitly.

Example
gap> PositionNonZero([1, 1, 2, 3, 2]);
1
gap> PositionNonZero([2, 3, 4, 51 * Z(2));
2
21.16.14 PositionSublist
> PositionSublist(list, sub[, from]) (operation)

returns the smallest index in the list 1ist at which a sublist equal to sub starts. If sub does not
occur the operation returns fail. The version with given from starts searching after position from.

To determine whether sub matches 1ist at a particular position, use IsMatchingSublist
(21.17.1) instead.

21.17 Properties and Attributes for Lists

A list that contains mutable objects (like lists or records) cannot store attribute values that depend on
the values of its entries, such as whether it is homogeneous, sorted, or strictly sorted, as changes in
any of its entries could change such property values, like the following example shows.

GAP - Reference Manual 282

Example

gap> 1:=[[1]1,[2]1];
(Cf11, 0211
gap> IsSSortedList(1l);

true

gap> 1[1][1]:=3;

3

gap> IsSSortedList(1l);
false

For such lists these property values must be computed anew each time the property is asked for.
For example, if 1ist is a list of mutable row vectors then the call of Position (21.16.1) with 1ist
as first argument cannot take advantage of the fact that 1ist is in fact sorted. One solution is to call
explicitly PositionSorted (21.16.5) in such a situation, another solution is to replace 1ist by an
immutable copy using Immutable (12.6.3).

21.17.1 IsMatchingSublist

> IsMatchingSublist(list, sub[, at]) (operation)

returns true if sub matches a sublist of 1ist from position 1 (or position at, in the case of three
arguments), or false, otherwise. If sub is empty true is returned. If 1ist is empty but sub is
non-empty false is returned.

If you actually want to know whether there is an at for which IsMatchingSublist(list,
sub, at) is true, use a construction like PositionSublist(list, sub) <> fail instead
(see PositionSublist (21.16.14)); it’s more efficient.

21.17.2 IsDuplicateFree

> IsDuplicateFree(obj) (property)
> IsDuplicateFreelList(obj) (filter)

IsDuplicateFree returns true if obj is both a list or collection, and it is duplicate free; other-
wise it returns false. IsDuplicateFreeList is a synonym for IsDuplicateFree and IsList.

A listis duplicate free if it is dense and does not contain equal entries in different positions. Every
domain (see 12.4) is duplicate free.

Note that GAP cannot compare arbitrary objects (by equality). This can cause that
IsDuplicateFree runs into an error, if obj is a list with some non-comparable entries.

21.17.3 IsSortedList

> IsSortedList (obj) (property)

returns true if obj is a list and it is sorted, and false otherwise.

Alist 1ist is sorted if it is dense (see IsDenseList (21.1.2)) and satisfies the relation 1ist[i] <
list[j] wheneveri < j. Note that a sorted list is not necessarily duplicate free (see IsDuplicateFree
(21.17.2) and IsSSortedList (21.17.4)).

GAP - Reference Manual 283

Many sorted lists are in fact homogeneous (see IsHomogeneousList (21.1.3)), but also non-
homogeneous lists may be sorted (see 31.11).

In sorted lists, membership test and computing of positions can be done by binary search,
see 21.19.

Note that GAP cannot compare (by less than) arbitrary objects. This can cause that IsSortedList
runs into an error, if obj is a list with some non-comparable entries.

21.17.4 IsSSortedList

> IsSSortedList(obj) (property)
> IsSet(obj) (property)

returns true if obj is a list and it is strictly sorted, and false otherwise. IsSSortedList is short
for “is strictly sorted list”; IsSet is just a synonym for IsSSortedList.

A list 1ist is strictly sorted if it is sorted (see IsSortedList (21.17.3)) and satisfies the relation
list[i] < 1ist[j] whenever i < j. In particular, such lists are duplicate free (see IsDuplicateFree
(21.17.2)).

(Currently there is little special treatment of lists that are sorted but not strictly sorted. In particular,
internally represented lists will not store that they are sorted but not strictly sorted.)

Note that GAP cannot compare (by less than) arbitrary objects. This can cause that
IsSSortedList runs into an error, if obj is a list with some non-comparable entries.

21.17.5 Length

> Length(list) (attribute)

returns the length of the list 1ist, which is defined to be the index of the last bound entry in
list.

21.17.6 ConstantTimeAccessList

> ConstantTimeAccessList(list) (attribute)

ConstantTimeAccessList returns an immutable list containing the same elements as the list
list (which may have holes) in the same order. If 1ist is already a constant time access list,
ConstantTimeAccessList returns an immutable copy of 1ist directly. Otherwise it puts all ele-
ments and holes of 1ist into a new list and makes that list immutable.

21.18 Sorting Lists

GAP implements three different families of sorting algorithms. The default algorithm is pattern-
defeating quicksort, a variant of quicksort which performs better on partially sorted lists and has good
worst-case behaviour. The functions which begin Stable are stable (equal elements keep the same
relative order in the sorted list) and use merge sort. Finally, the functions which begin Shell use the
shell sort which was GAP’s default search algorithm before 4.9. Sortex (21.18.3) and SortingPerm
(21.18.4) are also stable.

GAP - Reference Manual 284

21.18.1 Sort

> Sort(list[, func]) (operation)
> SortBy (list, func) (operation)
> StableSort(list[, func]) (operation)
> StableSortBy(list[, func]) (operation)

Sort sorts the list 1ist in increasing order. In the one argument form Sort uses the operator <
to compare the elements. (If the list is not homogeneous it is the users responsibility to ensure that
< is defined for all element pairs, see 31.11) In the two argument form Sort uses the function func
to compare elements. func must be a function taking two arguments that returns true if the first is
regarded as strictly smaller than the second, and false otherwise.

StableSort behaves identically to Sort, except that StableSort will keep elements which com-
pare equal in the same relative order, while Sort may change their relative order.

Sort does not return anything, it just changes the argument 1ist. Use ShallowCopy (12.7.1)
if you want to keep 1ist. Use Reversed (21.20.7) if you want to get a new list that is sorted in
decreasing order.

SortBy sorts the list 1ist into an order such that func(1ist[i]) <= func(list[i+1]) forall
relevant i. func must thus be a function on one argument which returns values that can be compared.
Each func(list[i]) is computed just once and stored, making this more efficient than using the
two-argument version of Sort in many cases.

StableSortBy behaves the same as SortBy except that, like StableSort, it keeps pairs of values
which compare equal when func is applied to them in the same relative order.

Example
gap> list := [5, 4, 6, 1, 7, 5 1;; Sort(list); list;

[1, 4,5,5,6, 7]

gap> SortBy(list, x -> x mod 3);

gap> list; # Sorted by mod 3

L6, 1, 4, 7, 5, 5]

gap> list := [[0,6], [1,2], [1,3], [1,5], [0,4], [3,4] 1;;

gap> Sort(list, function(v,w) return v*v < wkw; end);

gap> list; # sorted according to the Euclidean distance from [0,0]
rrt+, 21,011,371, 00,41, 03,41, (1,51, [0,61]1

gap> SortBy(list, function(v) return v[1] + v[2]; end);

gap> list; # sorted according to Manhattan distance from [0,0]

tf+, 21,011,381, 00,41, 01,51, [0,61,[3,41]

gap> list := [[0,6], [1,3], [3,4], [1,5], [1,2], [0,4], 1;;

gap> Sort(list, function(v,w) return v[1] < w[1]; end);

gap> # note the random order of the elements with equal first component:
gap> list;

tfo,e61, 00,41, 01,31, 01,51, [01,27,[3,41]

21.18.2 SortParallel

> SortParallel(listl, list2[, func]) (operation)
> StableSortParallel(listl, 1ist2[, func]) (operation)

SortParallel sorts the list 1ist1 in increasing order just as Sort (21.18.1) does. In parallel it
applies the same exchanges that are necessary to sort 1ist1 to the list 1ist2, which must of course

GAP - Reference Manual 285

have at least as many elements as 1ist1 does.

StableSortParallel behaves identically to SortParallel, except it keeps elements in 1ist1
which compare equal in the same relative order.

Example
gap> listl := [5, 4, 6, 1, 7, 5 1;;
gap> list2 := [2, 3, 5, 7, 8, 9 1;;
gap> SortParallel(listl, list2);
gap> listl;
[1, 4, 5, 5, 6, 7]
gap> list2;
L7, 3, 2,9, 5, 81

Note that [7, 3, 2, 9,5, 8] or [7, 3,9, 2,5, 8] are possible results.
StableSortParallel will alwaysreturn [7, 3, 2, 9, 5, 8].

21.18.3 Sortex

> Sortex(list[, func]) (operation)
sorts the list 1ist and returns a permutation that can be applied to 1ist to obtain the sorted list.
The one argument form sorts via the operator <, the two argument form sorts w.r.t. the function func.
The permutation returned by Sortex will keep elements which compare equal in the same relative
order. (If the list is not homogeneous it is the user’s responsibility to ensure that < is defined for all
element pairs, see 31.11)
Permuted (21.20.18) allows you to rearrange a list according to a given permutation.
Example

gap> listl := [5, 4, 6, 1, 7, 5 1;;
gap> list2 := ShallowCopy(listl);;
gap> perm := Sortex(listl);
(1,3,5,6,4)

gap> listil;

[1, 4,5, 5,6, 7]

gap> Permuted(list2, perm);

(1, 4,5,5,6, 7]

21.18.4 SortingPerm

> SortingPerm(list) (attribute)

SortingPerm returns the same as Sortex (21.18.3) but does not change the argument.
Example

gap> listl := [5, 4, 6, 1, 7, 5 1;;
gap> list2 := ShallowCopy(listl);;
gap> perm := SortingPerm(listl);
(1,3,5,6,4)

gap> listl;

[5, 4,6, 1,7, 5]

gap> Permuted(list2, perm);

[1, 4, 5, 5,6, 7]

GAP - Reference Manual 286

21.19 Sorted Lists and Sets

Searching objects in a list works much quicker if the list is known to be sorted. Currently GAP exploits
the sortedness of a list automatically only if the list is strictly sorted, which is indicated by the property
IsSSortedList (21.17.4).

Remember that a list of mutable objects cannot store that it is strictly sorted but has to test it
anew whenever it is asked whether it is sorted, see the remark in 21.17. Therefore GAP cannot
take advantage of the sortedness of a list if this list has mutable entries. Moreover, if a sorted list
list with mutable elements is used as an argument of a function that expects this argument to be
sorted, for example UniteSet (21.19.6) or RemoveSet (21.19.5), then it is checked whether 1ist is
in fact sorted; this check can have the effect actually to slow down the computations, compared to
computations with sorted lists of immutable elements or computations that do not involve functions
that do automatically check sortedness.

Strictly sorted lists are used to represent sets in GAP. More precisely, a strictly sorted list is called
a proper set in the following, in order to avoid confusion with domains (see 12.4) which also represent
sets.

In short proper sets are represented by sorted lists without holes and duplicates in GAP. Note that
we guarantee this representation, so you may make use of the fact that a set is represented by a sorted
list in your functions.

In some contexts (for example see 16), we also want to talk about multisets. A multiset is like a
set, except that an element may appear several times in a multiset. Such multisets are represented by
sorted lists without holes that may have duplicates.

This section lists only those functions that are defined exclusively for proper sets. Set theo-
retic functions for general collections, such as Intersection (30.5.2) and Union (30.5.3), are de-
scribed in Chapter 30. In particular, for the construction of proper sets, see SSortedList (30.3.7) and
AsSSortedList (30.3.10). For finding positions in sorted lists, see PositionSorted (21.16.5).

There are nondestructive counterparts of the functions UniteSet (21.19.6), IntersectSet
(21.19.7), and SubtractSet (21.19.8) available for proper sets. These are UnionSet,
IntersectionSet, and Difference (30.5.4). The former two are methods for the more general op-
erations Union (30.5.3) and Intersection (30.5.2), the latter is itself an operation (see Difference
(30.5.4)).

The result of IntersectionSet and UnionSet is always a new list, that is not identical to any
other list. The elements of that list however are identical to the corresponding elements of the first
argument set. If set is not a proper set it is not specified to which of a number of equal elements in
set the element in the result is identical (see 21.6). The following functions, if not explicitly stated
differently, take two arguments, set and obj, where set must be a proper set, otherwise an error
is signalled; If the second argument obj is a list that is not a proper set then Set (30.3.7) is silently
applied to it first.

21.19.1 \in (for strictly sorted lists)
> \in(obj, list) (method)
For a list 1ist that stores that it is strictly sorted, the test with \in (21.19.1) whether the object

obj is an entry of 1ist uses binary search. This test can be entered also with the infix notation obj
in list.

GAP - Reference Manual 287

21.19.2 IsEqualSet

> IsEqualSet(listl, list2) (operation)

tests whether 1ist1 and 1ist2 are equal when viewed as sets, that is if every element of 1ist1
is an element of 1ist2 and vice versa. Either argument of IsEqualSet may also be a list that is not
a proper set, in which case Set (30.3.7) is applied to it first.

If both lists are proper sets then they are of course equal if and only if they are also equal as lists.
Thus IsEqualSet(listl, list2) isequivalentto Set(listl) = Set(list2) (see Set
(30.3.7)), but the former is more efficient.

Example
gap> IsEqualSet([2,3,5,7,11], [11,7,5,3,2]);
true
gap> IsEqualSet([2,3,5,7,11], [2,3,5,7,11,13]);
false
21.19.3 IsSubsetSet
> IsSubsetSet(listl, list2) (operation)

tests whether every element of 1ist2 is contained in 1ist1. Either argument of IsSubsetSet
may also be a list that is not a proper set, in which case Set (30.3.7) is applied to it first.

21.19.4 AddSet

> AddSet (set, Obj) (operation)

adds the element obj to the proper set set. If obj is already contained in set then set is
not changed. Otherwise obj is inserted at the correct position such that set is again a proper set
afterwards.

Note that obj must be in the same family as each element of set.
Example

gap> s := [2,3,7,11];;
gap> AddSet(s, 5); s;
[2, 3,5, 7, 11 1]

gap> AddSet(s, 13); s;
[2, 3,5, 7, 11, 13]
gap> AddSet(s, 3); s;
[2, 3,5, 7, 11, 13]

21.19.5 RemoveSet

> RemoveSet(set, obj) (operation)

removes the element obj from the proper set set. If obj is not contained in set then set is
not changed. If obj is an element of set it is removed and all the following elements in the list are
moved one position forward.

GAP - Reference Manual 288

Example

gap> s := [2, 3, 4, 5,6, 7 1;;
gap> RemoveSet(s, 6); s;

[2, 3,4,5,7]

gap> RemoveSet(s, 10); s;

[2, 3,4,5, 7]

21.19.6 UniteSet

> UniteSet(set, list)

(operation)

unites the proper set set with 1ist. This is equivalent to adding all elements of 1ist to set
(see AddSet (21.19.4)).

Example
gap> set := [2, 3, 5, 7, 11 1;;

gap> UniteSet(set, [4, 8, 91); set;

[2, 3, 4,5, 7, 8, 9, 11]

gap> UniteSet(set, [16, 9, 25, 13, 16 1); set;
[2, 3, 4, 5,7, 8, 9, 11, 13, 16, 25]

21.19.7 IntersectSet

> IntersectSet(set, list) (operation)

intersects the proper set set with 1ist. This is equivalent to removing from set all elements of
set that are not contained in 1ist.

Example
, 11, 13, 16 1;;
, 9, 11, 13, 15, 17 1); set;

gap> set := [2, 3, 4, 5,
gap> IntersectSet(set, [
[3,5,7,9, 11, 13 1]
gap> IntersectSet(set, [9, 4, 6, 81); set;
[9]

7, 8, 9
3, 5,7

3 >

21.19.8 SubtractSet

> SubtractSet(set, list)

(operation)

subtracts 1ist from the proper set set. This is equivalent to removing from set all elements of
list.

Example
gap> set := [2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1;;
gap> SubtractSet(set, [6, 10]); set;

[2, 3,4,5,7,8, 9, 111

gap> SubtractSet(set, [9, 4, 6, 81); set;

[2, 3,5, 7, 111

GAP - Reference Manual 289

21.20 Operations for Lists

Several of the following functions expect the first argument to be either a list or a collection (see 30),
with possibly slightly different meaning for lists and non-list collections.

21.20.1 Concatenation (for several lists)

> Concatenation(listl, list2, ...) (function)
> Concatenation(list) (function)

In the first form Concatenation returns the concatenation of the lists 1ist1, 1ist2, etc. The
concatenation is the list that begins with the elements of 1ist1, followed by the elements of 1ist2,
and so on. Each list may also contain holes, in which case the concatenation also contains holes at the
corresponding positions.

In the second form 1ist must be a dense list of lists 1ist1, 1ist2, etc., and Concatenation
returns the concatenation of those lists.

The result is a new mutable list, that is not identical to any other list. The elements of that list
however are identical to the corresponding elements of 1ist1, 1ist2, etc. (see 21.6).

Note that Concatenation creates a new list and leaves its arguments unchanged, while Append
(21.4.5) changes its first argument. For computing the union of proper sets, Union (30.5.3) can be
used, see also 21.19.

Example
gap> Concatenation([1, 2, 31, [4, 51);
[1, 2, 3, 4, 5]

gap> Concatenation([2,3,,5,,7], [11,,13,,,,17,,19]);
(2, 3,, 5,, 7, 11,, 13,,,, 17,, 19 1]

gap> Concatenation([[1,2,3], [2,3,4], [3,4,5] 1);
[1, 2, 3, 2, 3, 4, 3, 4, 51

21.20.2 Compacted

> Compact ed(list) (operation)

returns a new mutable list that contains the elements of 1ist in the same order but omitting the
holes.

Example
gap> 1:=[,1,,,3,,,4,[5,,,6]1,7];; Compacted(1);
[1’ 3, 4’ [5,,’ 6]’ 7]
21.20.3 Collected
> Collected(list) (operation)

returns a new list new that contains for each element elm of the list 1ist a list of length two, the
first element of this is elm itself and the second element is the number of times elm appears in 1ist.
The order of those pairs in new corresponds to the ordering of the elements elm, so that the result is
sorted.

For all pairs of elements in 1ist the comparison via < must be defined.

GAP - Reference Manual 290

Example

gap> Factors(Factorial(10));
[2,2,2,2,2,2,2,2,3,3,3,3,5,5, 71

gap> Collected(last);

(l2,81,038,41,[5,21,[7,11]1

gap> Collected(last);
trftz,81,11, 008,411,171, (06,271,171, [[7,11,11]1

21.20.4 DuplicateFreeList

> DuplicateFreeList(1list) (operation)
> Unique(list) (operation)

returns a new mutable list whose entries are the elements of the list 1ist with duplicates re-
moved. DuplicateFreeList only uses the = comparison and will not sort the result. Therefore
DuplicateFreeList can be used even if the elements of 1ist do not lie in the same family. Other-
wise, if 1ist contains objects that can be compared with \< (31.11.1) then it is much more efficient
to use Set (30.3.7) instead of DuplicateFreeList.

Unique is a synonym for DuplicateFreeList.
Example
gap> 1:=[1,Z(3),1,"abc",Group((1,2,3),(1,2)),Z(3),Group((1,2),(2,3))];;
gap> DuplicateFreelList(1);

[1, Z(3), "abc", Group([(1,2,3), (1,2) 1)]

21.20.5 AsDuplicateFreeList

> AsDuplicateFreelList(list) (attribute)
returns the same result as DuplicateFreelList (21.20.4), except that the result is immutable.

21.20.6 Flat

> Flat(list) (operation)

returns the list of all elements that are contained in the list 1ist or its sublists. That is, Flat first
makes a new empty list new. Then it loops over the elements elm of 1ist. If elm is not a list it is

added to new, otherwise Flat appends Flat(elm) to new.
Example
gap> Flat([1, [2, 3], [[1,21,311);
[1, 2, 3,1, 2, 31

gap> Flat([1);

L1

To reconstruct a matrix from the list obtained by applying Flat to the matrix, the sublist operator
can be used, as follows.
Example
gap> 1:=[9..14];;w:=2;; # w is the length of each row
gap> sub:=[1..w];;List([1..Length(1)/w],i->1{(i-1)*w+subl});
L [L9, 1071, [11, 121, [13, 141 1

GAP - Reference Manual 291

21.20.7 Reversed

> Reversed(list) (function)

returns a new mutable list, containing the elements of the dense list 1ist in reversed order.

The argument list is unchanged. The result list is a new list, that is not identical to any other
list. The elements of that list however are identical to the corresponding elements of the argument list
(see 21.6).

Reversed implements a special case of list assignment, which can also be formulated in terms of
the {} operator (see 21.4).

Example
gap> Reversed([1, 4, 9, 5, 6, 71);
[7,6,5,9,4,1]

21.20.8 Shuffle

> Shuffle(list) (operation)

The argument 1ist must be a dense mutable list. This operation permutes the entries of 1ist
randomly (in place), and returns 1ist.

Example

gap> Reset(GlobalMersenneTwister, 12345);; # make manual tester happy

gap> 1 := [1..20];

[1..20]

gap> m := Shuffle(ShallowCopy(1));

[s8, 13, 1, 3, 20, 15, 4, 7, 5, 18, 6, 12, 16, 11, 2, 10, 19, 17, 9,
14 1]

gap> 1;

[1..20]1]

gap> Shuffle(1);;

gap> 1;

[19, 5, 7, 20, 16, 1, 10, 15, 12, 11, 13, 2, 14, 3, 4, 17, 6, 8, 9,
18 1]

o |

21.20.9 IsLexicographicallyLess

> IsLexicographicallyLess(listl, 1list2) (function)

Let 1ist1 and 1ist2 be two dense, but not necessarily homogeneous lists (see IsDenseList
(21.1.2), IsHomogeneousList (21.1.3)), such that for each i, the entries in both lists at position i
can be compared via <. IsLexicographicallyLess returns true if 1ist1 is smaller than 1ist2
w.r.t. lexicographical ordering, and false otherwise.

21.20.10 Apply

> Apply(list, func) (function)

Apply applies the function func to every element of the dense and mutable list 1ist, and replaces
each element entry by the corresponding return value.

GAP - Reference Manual 292

Apply changes its argument. The nondestructive counterpart of Apply is List (30.3.5).

Example
gap> 1:= [1, 2, 3 1;; Apply(1l, i ->i"2); 1;
[1, 4, 9]
21.20.11 Perform
> Perform(list, func) (function)

Perform applies the function func to every element of the list 1ist, discarding any return values.
It does not return a value.

Example
gap> 1 := [1, 2, 3];; Perform(1l,

> function(x) if IsPrimelInt(x) then Print(x,"\n"); fi; end);
2

3

21.20.12 PermListList

> PermListList(listl, list2) (function)

returns a permutation p of [1 .. Length(Iist1)] such that 1ist1[i~p] = 1ist2[i]. It
returns fail if there is no such permutation.

Example

gap> listl := [5, 4, 6, 1, 7, 5 1;;
gap> list2 := [4, 1, 7, 5, 5, 6 1;;
gap> perm := PermListList(listl, list2);
(1,2,4)(3,5,6)

gap> Permuted(list2, perm);

[5, 4,6, 1,7, 5]

21.20.13 Maximum

> Maximum(obj1l, obj2, ...) (function)
> Maximum(list) (function)

In the first form Maximum returns the maximum of its arguments, i.e., one argument obj for which
obj > objl,0obj > obj2 etc.

In the second form Maximum takes a homogeneous list 1ist and returns the maximum of the
elements in this list.

Example
gap> Maximum(-123, 700, 123, 0, -1000);
700
gap> Maximum([-123, 700, 123, 0, -1000]);
700

gap> # lists are compared elementwise:
gap> Maximum([1,2], [0,15], [1,5], [2,-11]);
[2, -11]

To get the index of the maximum element use PositionMaximum (21.16.7)

GAP - Reference Manual 293

21.20.14 Minimum

> Minimum(obj1l, obj2, ...) (function)
> Minimum(list) (function)

In the first form Minimum returns the minimum of its arguments, i.e., one argument obj for which
obj < obj1l,o0bj < obj2 etc.

In the second form Minimum takes a homogeneous list 1ist and returns the minimum of the
elements in this list.

Note that for both Maximum (21.20.13) and Minimum the comparison of the objects obj1, obj2
etc. must be defined; for that, usually they must lie in the same family (see 13.1).

Example
gap> Minimum(-123, 700, 123, 0, -1000);
-1000
gap> Minimum([-123, 700, 123, 0, -1000]);
-1000
gap> Minimum([1, 21, [0, 151, [1,571, [2, -111);
[0, 15]

To get the index of the minimum element use PositionMinimum (21.16.7)

21.20.15 MaximumList and MinimumList

> MaximumList(list[, seed]) (operation)
> MinimumList(list[, seed]) (operation)

return the maximum resp. the minimum of the elements in the list 1ist. They are the operations
called by Maximum (21.20.13) resp. Minimum (21.20.14). Methods can be installed for special kinds of
lists. For example, there are special methods to compute the maximum resp. the minimum of a range
(see 21.22).

If a second argument seed is supplied, then the result is the maximum resp. minimum of the union
of 1ist and seed. In this manner, the operations may be applied to empty lists.

21.20.16 Cartesian

> Cartesian(listl, list2, ...) (function)
> Cartesian(list) (function)

In the first form Cartesian returns the cartesian product of the lists 1ist1, 1ist2, etc.

In the second form 1ist must be a list of lists 1ist1, 1ist2, etc., and Cartesian returns the
cartesian product of those lists.

The cartesian product is a list cart of lists tup, such that the first element of tup is an element of
list1, the second element of tup is an element of 1ist2, and so on. The total number of elements
in cart is the product of the lengths of the argument lists. In particular cart is empty if and only if
at least one of the argument lists is empty. Also cart contains duplicates if and only if no argument
list is empty and at least one contains duplicates.

The last index runs fastest. That means that the first element tupl of cart contains the first
element from 1ist1, from 1ist2 and so on. The second element tup2 of cart contains the first

GAP - Reference Manual 294

element from list1, the first from 1ist2, and so on, but the last element of tup2 is the second
element of the last argument list. This implies that cart is a proper set if and only if all argument lists
are proper sets (see 21.19).

The function Tuples (16.2.8) computes the k-fold cartesian product of a list.

gap> Cartesian([1,2], [3,4],
tf1,3 51, [1,3,61,

[
[2,3,61,[2,4,51, 12,4,]
gap> Cartesian([1,2,2], [1,1,2]);
(1,11, 01,21,01,21,02,11,[0[2,11,1[2,21,
[2,1]1,[2,11, 2,211

21.20.17 IteratorOfCartesianProduct

> IteratorOfCartesianProduct(listl, list2, ...) (function)
> IteratorOfCartesianProduct(list) (function)

In the first form IteratorOfCartesianProduct returns an iterator (see 30.8) of all elements of
the cartesian product (see Cartesian (21.20.16)) of the lists 1ist1, 1ist2, etc.

In the second form Iist must be a list of lists listl, 1list2, etc.,, and
IteratorOfCartesianProduct returns an iterator of the cartesian product of those lists.

Resulting tuples will be returned in the lexicographic order. Usage of iterators of cartesian prod-
ucts is recommended in the case when the resulting cartesian product is big enough, so its generating
and storage will require essential amount of runtime and memory. For smaller cartesian products it is
faster to generate the full set of tuples using Cartesian (21.20.16) and then loop over its elements
(with some minor overhead of needing more memory).

21.20.18 Permuted

> Permuted(list, perm) (operation)

returns a new list new that contains the elements of the list 1ist permuted according to the per-
mutation perm. That is new [i “perm] = Iist[i].

Sortex (21.18.3) allows you to compute a permutation that must be applied to a list in order to
get the sorted list.

Example
gap> Permuted([5, 4, 6, 1, 7, 561, (1,3,5,6,4));
[1’ 4, 5) 5’ 6, 7]

21.20.19 List (for a list (and a function))

> LiSt(liSt[, func]) (function)

This function returns a new mutable list new of the same length as the list 1ist (which
may have holes). The entry new[i] is unbound if 1ist [i] is unbound. Otherwise new[i] =
func (1ist [i]). If the argument func is omitted, its default is IdFunc (5.4.6), so this function
does the same as ShallowCopy (12.7.1) (see also 21.7).

GAP - Reference Manual 295

Example
gap> List([1,2,3], i -> i"2);

[1, 4, 91

gap> List([1..10], IsPrime);

[false, true, true, false, true, false, true, false, false, false]
gap> List([,1,,3,4], x-> x > 2);

[, false,, true, true]

(See also List (30.3.5).)

21.20.20 Filtered

> Filtered(listorcoll, func) (function)

returns a new list that contains those elements of the list or collection 1istorcoll (see 30),
respectively, for which the unary function func returns true.

If the first argument is a list, the order of the elements in the result is the same as the order of the
corresponding elements of this list. If an element for which func returns true appears several times
in the list it will also appear the same number of times in the result. The argument list may contain
holes, they are ignored by Filtered.

For each element of 1istorcoll, func must return either true or false, otherwise an error is
signalled.

The result is a new list that is not identical to any other list. The elements of that list however are
identical to the corresponding elements of the argument list (see 21.6).

List assignment using the operator \{\} (21.3.1) (see 21.4) can be used to extract elements of a
list according to indices given in another list.

Example

gap> Filtered([1..20], IsPrime);

[2, 3,5, 7, 11, 13, 17, 19 1]

gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);
[3, 4,4, 7]

gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6 1,

> n -> IsPrimePowerInt(n) and n mod 2 <> 0);

[3, 7]

gap> Filtered(Group((1,2), (1,2,3)), x -> Order(x) =2);
[(2,3, (1,2), (1,3) 1]

21.20.21 Number

> Number (listorcoll[, func]) (function)

Called with a list 1istorcoll, Number returns the number of bound entries in this list. For dense
lists Number, Length (21.17.5), and Size (30.4.6) return the same value; for lists with holes Number
returns the number of bound entries, Length (21.17.5) returns the largest index of a bound entry, and
Size (30.4.6) signals an error.

Called with two arguments, a list or collection 1istorcoll and a unary function func, Number
returns the number of elements of 1istorcoll for which func returns true. If an element for which

GAP - Reference Manual 296

func returns true appears several times in 1istorcoll it will also be counted the same number of
times.

For each element of 1istorcoll, func must return either true or false, otherwise an error is
signalled.

Filtered (21.20.20) allows you to extract the elements of a list that have a certain property.

Example
gap> Number([2, 3, 5, 71);

4

gap> Number([, 2, 3,, 5,, 7,,,, 111);

5

gap> Number([1..20], IsPrime);

8

gap> Number([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);
4

gap> Number([1, 3, 4, -4, 4, 7, 10, 6 1,

> n -> IsPrimePowerInt(n) and n mod 2 <> 0);

2

gap> Number(Group((1,2), (1,2,3)), x -> Order(x) = 2);
3

21.20.22 First

> First(list, func) (function)

First returns the first element of the list 1ist for which the unary function func returns true.
list may contain holes. func must return either true or false for each element of 1ist, otherwise
an error is signalled. If func returns false for all elements of 1ist then First returns fail.

PositionProperty (21.16.8) allows you to find the position of the first element in a list that
satisfies a certain property.

Example
gap> First([1077..10°8], IsPrime);
10000019
gap> First([1075..1076],
> n -> not IsPrime(n) and IsPrimePowerInt(n));
100489
gap> First([1 .. 20], x -> x < 0);
fail
gap> First([fail], x -> x = fail);
fail
21.20.23 ForAll
> ForAll(listorcoll, func) (function)

tests whether the unary function func returns true for all elements in the list or collection
listorcoll.
Example

gap> ForAll([1..20], IsPrime);
false

GAP - Reference Manual 297

gap> ForAll([2,3,4,5,8,9], IsPrimePowerInt);

true

gap> ForAll([2..14], n -> IsPrimePowerInt(n) or n mod 2 = 0);
true

gap> ForAll(Group((1,2), (1,2,3)), i -> SignPerm(i) =1);
false

21.20.24 ForAny

> ForAny(listorcoll, func) (function)

tests whether the unary function func returns true for at least one element in the list or collection
listorcoll.

Example
gap> ForAny([1..20], IsPrime);
true
gap> ForAny([2,3,4,5,8,9], IsPrimePowerInt);
true
gap> ForAny([2..14],
> n -> IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n));
false
gap> ForAny(Integers, i -> i>0
> and ForAll([0,2..4], j -> IsPrime(i+j)));
true
21.20.25 Product
> Product(listorcoll[, func][, init]) (function)

Called with one argument, a dense list or collection 1istorcoll, Product returns the product of
the elements of 1istorcoll (see 30).

Called with a dense list or collection 1istorcoll and a function func, which must be a function
taking one argument, Product applies the function func to the elements of 1istorcoll, and returns
the product of the results. In either case Product returns 1 if the first argument is empty.

The general rules for arithmetic operations apply (see 21.15), so the result is immutable if and
only if all summands are immutable.

If 1istorcoll contains exactly one element then this element (or its image under func if appli-
cable) itself is returned, not a shallow copy of this element.

If an additional initial value init is given, Product returns the product of init and the elements
of the first argument resp. of their images under the function func. This is useful for example if the
first argument is empty and a different identity than 1 is desired, in which case init is returned.

Example
gap> Product([2, 3, 5, 7, 11, 13, 17, 19]);
9699690
gap> Product([1..10], x->x"2);

13168189440000

gap> Product([(1,2), (1,3), (1,4), (2,3), (2,4), (3,4) 1);
(1,4)(2,3)

GAP - Reference Manual 298

gap> Product(GF(8));
0xZ(2)

21.20.26 Sum

> Sum(listorcoll[, func][, init]) (function)

Called with one argument, a dense list or collection 1istorcoll, Sum returns the sum of the
elements of 1istorcoll (see 30).

Called with a dense list or collection 1istorcoll and a function func, which must be a function
taking one argument, Sum applies the function func to the elements of 1istorcoll, and returns the
sum of the results. In either case Sum returns O if the first argument is empty.

The general rules for arithmetic operations apply (see 21.15), so the result is immutable if and
only if all summands are immutable.

If 1istorcoll contains exactly one element then this element (or its image under func if appli-
cable) itself is returned, not a shallow copy of this element.

If an additional initial value init is given, Sum returns the sum of init and the elements of the
first argument resp. of their images under the function func. This is useful for example if the first
argument is empty and a different zero than 0 is desired, in which case init is returned.

Example
gap> Sum([2, 3, 5, 7, 11, 13, 17, 191);
7

gap> Sum([1..10], x->x"2);

385

gap> Sum([[1,2], [3,4], [5,6] 1);

[9, 12]

gap> Sum(GF(8));

0%Z(2)

21.20.27 Iterated
> Iterated(list, f) (operation)
returns the result of the iterated application of the function f, which must take two arguments, to

the elements of the list 1ist. More precisely, if 1ist has length n then Iterated returns the result
of the following application, f(...f(f(1list[l],1ist[2]),1ist[3]),...,1ist[n]).

Example
gap> Iterated([126, 66, 105 1, Gecd);
3
21.20.28 ListN
> ListN(listl, list2, ..., listn, f) (function)

applies the n-argument function £ to the lists. That is, ListN returns the list whose i-th entry is
f(list1[i],1ist2][i],...,listnl[i]).

GAP - Reference Manual 299

Example

gap> ListN([1,2], [3,4], \+);
[4, 6]

21.21 Advanced List Manipulations

The following functions are generalizations of List (30.3.5), Set (30.3.7), Sum (21.20.26), and
Product (21.20.25).

21.21.1 ListX

> ListX(argl, arg2, ..., argn, func) (function)

ListX returns a new list constructed from the arguments.
Each of the arguments argl, arg2, ... argn must be one of the following:

a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements;

a function returning a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements, where the
loop-range depends on the values of the outer loop-variables; or

a function returning true or false
this introduces a new if-statement in the sequence of nested for-loops and if-statements.

The last argument func must be a function, it is applied to the values of the loop-variables and
the results are collected.

Thus ListX(list, func) is the same as List(list, func), and ListX(list,
func, x -> x) isthe same as Filtered(list, func).

As a more elaborate example, assume argl is a list or collection, arg?2 is a function returning
true or false, arg3 is a function returning a list or collection, and arg4 is another function returning
true or false, then

result := ListX(argl, arg2, arg3, arg4, func);

is equivalent to

result := [];
for vl in argl do
if arg2(vl) then
for v2 in arg3(vl) do
if argd(v1, v2) then
Add(result, func(vl, v2));
fi;
od;
fi;
od;

The following example shows how ListX can be used to compute all pairs and all strictly sorted
pairs of elements in a list.

GAP - Reference Manual 300

Example

gap> 1:= [1, 2, 3, 4 1;;
gap> pair:= function(x, y) return [x, y]; end;;
gap> ListX(1, 1, pair);

[[1’ 1]’ [1’ 2], [1, 3], [1, 4]’ [2’ 1]’ [2’ 2]’
[2, 3], [2, 4], [3’ 1]} [3’ 2]’ [3’ 3]’ [3’ 4]’
(4,11, (04,21, 04,31,0[04,41]1

In the following example, \< (31.11.1) is the comparison operation:
Example

gap> ListX(1, 1, \<, pair);
(1,271, 01,31, [1,41,[2,31,[2,471, [3,41]1]

21.21.2 SetX

> SetX(argl, arg2, ..., func) (function)

The only difference between SetX and ListX (21.21.1) is that the result list of SetX is strictly
sorted.

21.21.3 SumX
> SumX(argl, arg2, ..., func) (function)

SumX returns the sum of the elements in the list obtained by ListX (21.21.1) when this is called
with the same arguments.

21.21.4 ProductX

> ProductX(argl, arg2, ..., func) (function)

ProductX returns the product of the elements in the list obtained by ListX (21.21.1) when this is
called with the same arguments.

21.22 Ranges

A range is a dense list of integers in arithmetic progression (or degression). This is a list of integers
such that the difference between consecutive elements is a nonzero constant. Ranges can be abbrevi-
ated with the syntactic construct

[first, second .. last]

or, if the difference between consecutive elements is 1, as

[first .. last 1.

If first > last, [first .. last] is the empty list, which by definition is also a
range; also, if second > first > last or second < first < last, then [first, second

last 1] is the empty list. If first = last, [first, second .. last] is a singleton

list, which is a range, too. Note that last - first must be divisible by the increment second -
first, otherwise an error is signalled.

GAP - Reference Manual 301

Currently, the integers first, second and last and the length of a range must be small integers,
that is at least —2¢ and at most 2¢ — 1 with d = 28 on 32-bit architectures and d = 60 on 64-bit
architectures.

Note also that a range is just a special case of a list. Thus you can access elements in a range (see
21.3), test for membership etc. You can even assign to such a range if it is mutable (see 21.4). Of
course, unless you assign last + second - first to the entry range [Length(range) + 1
1, the resulting list will no longer be a range.

Example
gap> r := [10..20];
[10 .. 20]
gap> Length(r);
11
gap> r[3];
12
gap> 17 in r;
true
gap> r[12] := 25;; r; # r is no longer a range

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25]
gap> r := [1,3..17];

[1, 3 .. 17 1]

gap> Length(r);

9

gap> rl[4];

7

gap> r := [0,-1..-9];

[0, -1 .. -91]

gap> r[5];

-4

gap>r := [1, 4 .. 32 1];

Error, Range: <last>-<first> (31) must be divisible by <inc> (3)

Most often ranges are used in connection with the for-loop see 4.20). Here the construct
for var in [first .. last] do statements od

replaces the

for var from first to last do statements od

which is more usual in other programming languages.

Example
gap> s := [];; for i in [10..20] do Add(s, i"2); od; s;
[100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]

Note that a range with 1ast >= first is at the same time also a proper set (see 21.19), because
it contains no holes or duplicates and is sorted, and also a row vector (see 23), because it contains no
holes and all elements are integers.

21.22.1 IsRange

> IsRange(obj) (Category)

tests if the object obj is a range, i.e. is a dense list of integers that is also a range (see 21.22 for a
definition of “range”).

GAP - Reference Manual 302

Example
gap> IsRange([1,2,3]); IsRange([7,5,3,1]);
true
true
gap> IsRange([1,2,4,5]); IsRange([1,,3,,5,,7]);
false
false
gap> IsRange([]); IsRange([1]);
true
true
21.22.2 ConvertToRangeRep
> ConvertToRangeRep(list) (function)

For some lists the GAP kernel knows that they are in fact ranges. Those lists are represented
internally in a compact way instead of the ordinary way.

If 1ist is a range then ConvertToRangeRep changes the representation of 1ist to this compact
representation.

This is important since this representation needs only 12 bytes for the entire range while the
ordinary representation needs 4length bytes.

Note that a list that is represented in the ordinary way might still be a range. It is just that GAP
does not know this. The following rules tell you under which circumstances a range is represented in
the compact way, so you can write your program in such a way that you make best use of this compact
representation for ranges.

Lists created by the syntactic construct [first, second .. last] are of course known to
be ranges and are represented in the compact way.

If you call ConvertToRangeRep for a list represented the ordinary way that is indeed a
range, the representation is changed from the ordinary to the compact representation. A call of
ConvertToRangeRep for a list that is not a range is ignored.

If you change a mutable range that is represented in the compact way, by assignment, Add (21.4.2)
or Append (21.4.5), the range will be converted to the ordinary representation, even if the change is
such that the resulting list is still a proper range.

Suppose you have built a proper range in such a way that it is represented in the ordinary way and
that you now want to convert it to the compact representation to save space. Then you should call
ConvertToRangeRep with that list as an argument. You can think of the call to ConvertToRangeRep
as a hint to GAP that this list is a proper range.
Example
gap> r:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

[1, 2, 3, 4,5,6,7,8,9, 10]

gap> ConvertToRangeRep(r); r;

[1..10]

gap> 1:= [1, 2, 4, 5 1;; ConvertToRangeRep(1); 1;
[1, 2, 4, 5]

B >

GAP - Reference Manual 303

21.23 Enumerators

An enumerator is an immutable list that need not store its elements explicitly but knows, from a set of
basic data, how to determine the i-th element and the position of a given object. A typical example of
this is a vector space over a finite field with g elements, say, for which it is very easy to enumerate all
elements using g-adic expansions of integers.

Using this enumeration can be even quicker than a binary search in a sorted list of vectors, see
IsQuickPositionList (21.23.1).

On the one hand, element access to an enumerator may take more time than element access to
an internally represented list containing the same elements. On the other hand, an enumerator may
save a vast amount of memory. Take for example a permutation group of size a few millions. Even
for moderate degree it is unlikely that a list of all its elements will fit into memory whereas it is no
problem to construct an enumerator from a stabilizer chain (see 43.6).

There are situations where one only wants to loop over the elements of a domain, without using
the special facilities of an enumerator, namely the particular order of elements and the possibility to
find the position of elements. For such cases, GAP provides iterators (see 30.8).

The functions Enumerator (30.3.2) and EnumeratorSorted (30.3.3) return enumerators of do-
mains. Most of the special implementations of enumerators in the GAP library are based on the
general interface that is provided by EnumeratorByFunctions (30.3.4); one generic example is
EnumeratorByBasis (61.6.5), which can be used to get an enumerator of a finite dimensional free
module.

Also enumerators for non-domains can be implemented via EnumeratorByFunctions (30.3.4);
for a discussion, see 79.13.

21.23.1 IsQuickPositionList
> IsQuickPositionList(list) (filter)
This filter indicates that a position test in 1ist is quicker than about 5 or 6 element comparisons

for “smaller”. If this is the case it can be beneficial to use Position (21.16.1) in 1ist and a bit list
than ordered lists to represent subsets of 1ist.

Chapter 22

Boolean Lists

This chapter describes boolean lists. A boolean list is a list that has no holes and contains only the
boolean values true and false (see Chapter 20). In function names we call boolean lists blists for
brevity.

22.1 IsBlist (Filter)

22.1.1 IsBlist

> IsBlist(obj) (Category)

A boolean list (“blist™) is a list that has no holes and contains only true and false. Boolean lists
can be represented in an efficient compact form, see 22.5 for details.

Example
gap> IsBlist([true, true, false, false]);
true
gap> IsBlist([]);
true
gap> IsBlist([false,,true]); # has holes
false
gap> IsBlist([1,1,0,0]); # contains not only boolean values
false
gap> IsBlist(17); # is not even a list
false

Boolean lists are lists and all operations for lists are therefore applicable to boolean lists.

Boolean lists can be used in various ways, but maybe the most important application is their use
for the description of subsets of finite sets. Suppose set is a finite set, represented as a list. Then a
subset sub of set is represented by a boolean list blist of the same length as set such that blist[i] is
true if set[i] is in sub, and false otherwise.

304

GAP - Reference Manual 305

22.2 Boolean Lists Representing Subsets
22.2.1 BlistList

> BliStLiSt(liSt, sub) (function)
returns a new boolean list that describes the list sub as a sublist of the dense list 1ist. That is
BlistList returns a boolean list blist of the same length as 1ist such that blist[i] is true if 1ist|i]
is in sub and false otherwise.
1ist need not be a proper set (see 21.19), even though in this case BlistList is most efficient.
In particular 1ist may contain duplicates. sub need not be a proper sublist of 1ist, i.e., sub may

contain elements that are not in 1ist. Those elements of course have no influence on the result of
BlistList.

Example
gap> BlistList([1..10], [2,3,5,7]);

[false, true, true, false, true, false, true, false, false, false]
gap> BlistList([1,2,3,4,5,2,8,6,4,10], [4,8,9,16]);
[false, false, false, true, false, false, true, false, true, false]

See also UniteBlistList (22.4.2).

22.2.2 ListBlist

> ListBlist(list, blist)

(function)

returns the sublist sub of the list 1ist, which must have no holes, represented by the boolean list
blist, which must have the same length as 1ist.
sub contains the element 1ist[i] if blist|i] is true and does not contain the element if blist [i]

is false. The order of the elements in sub is the same as the order of the corresponding elements in
list.

Example
gap> ListBlist([1..8], [false,true,true,true,true,false,true,true]);
[2, 3,4,5,7, 8]

gap> ListBlist([1,2,3,4,5,2,8,6,4,10],

> [false,false,false,true,false,false,true,false,true,false]);

[4, 8, 4]

22.2.3 SizeBlist

> SizeBlist(blist)

(function)

returns the number of entries of the boolean list blist that are true. This is the size of the subset
represented by the boolean list blist.

Example
gap> SizeBlist([false, true, false, true, false]);
2

GAP - Reference Manual 306

22.2.4 IsSubsetBlist
> IsSubsetBlist(blistl, blist2) (function)
returns true if the boolean list b1ist2 is a subset of the boolean list b1ist1, which must have

equal length, and false otherwise. blist2 is a subset of blist1 if blist1[i] = blist1[i] or
blist2[i] for all i.

Example
gap> blistl := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> IsSubsetBlist(blistl, blist2);
false
gap> blist2 := [true, false, false, false];;
gap> IsSubsetBlist(blistl, blist2);
true

22.3 Set Operations via Boolean Lists

22.3.1 UnionBlist

> UnionBlist(blistl, blist2[, ...]) (function)
> UnionBlist(list) (function)

In the first form UnionBlist returns the union of the boolean lists b1ist1, blist2, etc., which
must have equal length. The union is a new boolean list that contains at position i the value blist1|i]
or blist2[i] or

The second form takes the union of all blists (which as for the first form must have equal length)
in the list 1ist.

22.3.2 IntersectionBlist

> IntersectionBlist(blistl, blist2[, ...]) (function)
> IntersectionBlist(list) (function)

In the first form IntersectionBlist returns the intersection of the boolean lists blist1,
blist2, etc., which must have equal length. The intersection is a new blist that contains at posi-
tion i the value blist1[i] and b1ist2]i] and

In the second form 1ist must be a list of boolean lists b1ist1, blist2, etc., which must have
equal length, and IntersectionBlist returns the intersection of those boolean lists.

22.3.3 DifferenceBlist
> DifferenceBlist(blistl, blist2) (function)
returns the asymmetric set difference of the two boolean lists bl1ist1 and blist2, which must

have equal length. The asymmetric set difference is a new boolean list that contains at position i the
value blist1[i] and not blist2][i].

GAP - Reference Manual 307

Example
gap> blistl := [true, true, false, false];;

gap> blist2 := [true, false, true, false];;
gap> UnionBlist(blistl, blist2);

[true, true, true, false]

gap> IntersectionBlist(blistl, blist2);

[true, false, false, false]

gap> DifferenceBlist(blistl, blist2);

[false, true, false, false]

22.4 Function that Modify Boolean Lists

22.4.1 UniteBlist

> UniteBlist(blistl, blist2) (function)
UniteBlist unites the boolean list bl1ist1 with the boolean list b1ist2, which must have the

same length. This is equivalent to assigning blist1[i] := blist1[i] or blist2][i] for all i.
UniteBlist returns nothing, it is only called to change blist1.

Example
gap> blistl := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;

gap> UniteBlist(blistl, blist2);
gap> blistl;
[true, true, true, false]

The function UnionBlist (22.3.1) is the nondestructive counterpart to UniteBlist.

22.4.2 UniteBlistList

> UniteBlistList(list, blist, sub)

(function)

works like UniteBlist(blist ,BlistList(list,sub)). As no intermediate blist is created,
the performance is better than the separate function calls.

22.4.3 IntersectBlist

> IntersectBlist(blistl, blist2) (function)
intersects the boolean list b1ist1 with the boolean list b1ist2, which must have the same length.
This is equivalent to assigning blist1[i] := blist1[i] and blist2[i] for all i.
IntersectBlist returns nothing, it is only called to change blist1.

Example
gap> blistl := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> IntersectBlist(blistl, blist2);

gap> blistil;

[true, false, false, false]

GAP - Reference Manual 308

The function IntersectionBlist (22.3.2) is the nondestructive counterpart to
IntersectBlist.

22.4.4 SubtractBlist
> SubtractBlist(blistl, blist2) (function)
subtracts the boolean list b1ist2 from the boolean list b1ist1, which must have equal length.

This is equivalent to assigning blist1[i] := blist1[i] and not blist2[i] for all i.
SubtractBlist returns nothing, it is only called to change blist1.

Example
gap